Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reduce number of ^ calls #124

Merged
merged 2 commits into from
Aug 9, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "Thermodynamics"
uuid = "b60c26fb-14c3-4610-9d3e-2d17fe7ff00c"
authors = ["Climate Modeling Alliance"]
version = "0.9.2"
version = "0.9.3"

[deps]
DocStringExtensions = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
Expand Down
104 changes: 66 additions & 38 deletions src/relations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1003,41 +1003,39 @@ end

Compute the saturation specific humidity, given a thermodynamic state `ts`.
"""
q_vap_saturation(param_set::APS, ts::ThermodynamicState) = q_vap_saturation(
param_set,
air_temperature(param_set, ts),
air_density(param_set, ts),
typeof(ts),
PhasePartition(param_set, ts),
)
function q_vap_saturation(param_set::APS, ts::ThermodynamicState)
T = air_temperature(param_set, ts)
ρ = air_density(param_set, ts)
q = PhasePartition(param_set, ts)
p_v_sat = saturation_vapor_pressure(param_set, typeof(ts), T, q)
return q_vap_saturation_from_density(param_set, T, ρ, p_v_sat)
end

"""
q_vap_saturation_liquid(param_set::APS, ts::ThermodynamicState)

Compute the saturation specific humidity over liquid,
given a thermodynamic state `ts`.
"""
q_vap_saturation_liquid(param_set::APS, ts::ThermodynamicState) =
q_vap_saturation_generic(
param_set,
air_temperature(param_set, ts),
air_density(param_set, ts),
Liquid(),
)
function q_vap_saturation_liquid(param_set::APS, ts::ThermodynamicState)
T = air_temperature(param_set, ts)
ρ = air_density(param_set, ts)
p_v_sat = saturation_vapor_pressure(param_set, T, Liquid())
return q_vap_saturation_from_density(param_set, T, ρ, p_v_sat)
end

"""
q_vap_saturation_ice(param_set::APS, ts::ThermodynamicState)

Compute the saturation specific humidity over ice,
given a thermodynamic state `ts`.
"""
q_vap_saturation_ice(param_set::APS, ts::ThermodynamicState) =
q_vap_saturation_generic(
param_set,
air_temperature(param_set, ts),
air_density(param_set, ts),
Ice(),
)
function q_vap_saturation_ice(param_set::APS, ts::ThermodynamicState)
T = air_temperature(param_set, ts)
ρ = air_density(param_set, ts)
p_v_sat = saturation_vapor_pressure(param_set, T, Ice())
return q_vap_saturation_from_density(param_set, T, ρ, p_v_sat)
end

"""
q_vap_saturation_from_density(param_set, T, ρ, p_v_sat)
Expand Down Expand Up @@ -1152,14 +1150,26 @@ The saturation excess is the difference between the total specific humidity `q.t
and the saturation specific humidity in equilibrium, and it is defined to be
nonzero only if this difference is positive.
"""
function saturation_excess(
param_set::APS,
T::FT,
ρ::FT,
p_vap_sat::FT,
q::PhasePartition{FT},
) where {FT <: Real}
q_vap_sat = q_vap_saturation_from_density(param_set, T, ρ, p_vap_sat)
return max(0, q.tot - q_vap_sat)
end

function saturation_excess(
param_set::APS,
T::FT,
ρ::FT,
::Type{phase_type},
q::PhasePartition{FT},
) where {FT <: Real, phase_type <: ThermodynamicState}
return max(0, q.tot - q_vap_saturation(param_set, T, ρ, phase_type, q))
p_vap_sat = saturation_vapor_pressure(param_set, phase_type, T)
return saturation_excess(param_set, T, ρ, p_vap_sat, q)
end

"""
Expand Down Expand Up @@ -1262,6 +1272,7 @@ liquid_fraction(param_set::APS, ts::ThermodynamicState) = liquid_fraction(

"""
PhasePartition_equil(param_set, T, ρ, q_tot, phase_type)
PhasePartition_equil(param_set, T, ρ, q_tot, p_vap_sat, liquid_frac)

Partition the phases in equilibrium, returning a [`PhasePartition`](@ref) object using the
[`liquid_fraction`](@ref) function where
Expand All @@ -1271,22 +1282,35 @@ Partition the phases in equilibrium, returning a [`PhasePartition`](@ref) object
- `ρ` (moist-)air density
- `q_tot` total specific humidity
- `phase_type` a thermodynamic state type
- `p_vap_sat` saturation vapor pressure
- `liquid_frac` liquid fraction

The residual `q.tot - q.liq - q.ice` is the vapor specific humidity.
"""
function PhasePartition_equil(
param_set::APS,
T::FT,
ρ::FT,
q_tot::FT,
p_vap_sat::FT,
liquid_frac::FT,
) where {FT <: Real}
q_c = saturation_excess(param_set, T, ρ, p_vap_sat, PhasePartition(q_tot)) # condensate specific humidity
q_liq = liquid_frac * q_c # liquid specific humidity
q_ice = (1 - liquid_frac) * q_c # ice specific humidity
return PhasePartition(q_tot, q_liq, q_ice)
end

function PhasePartition_equil(
param_set::APS,
T::FT,
ρ::FT,
q_tot::FT,
::Type{phase_type},
) where {FT <: Real, phase_type <: ThermodynamicState}
_liquid_frac = liquid_fraction(param_set, T, phase_type) # fraction of condensate that is liquid
q_c = saturation_excess(param_set, T, ρ, phase_type, PhasePartition(q_tot)) # condensate specific humidity
q_liq = _liquid_frac * q_c # liquid specific humidity
q_ice = (1 - _liquid_frac) * q_c # ice specific humidity

return PhasePartition(q_tot, q_liq, q_ice)
p_vap_sat = saturation_vapor_pressure(param_set, phase_type, T)
liquid_frac = liquid_fraction(param_set, T, phase_type) # fraction of condensate that is liquid
return PhasePartition_equil(param_set, T, ρ, q_tot, p_vap_sat, liquid_frac)
end

PhasePartition_equil(param_set::APS, ts::AbstractPhaseNonEquil) =
Expand Down Expand Up @@ -1328,13 +1352,16 @@ end

PhasePartition(param_set::APS, ts::AbstractPhaseDry{FT}) where {FT <: Real} =
q_pt_0(FT)
PhasePartition(param_set::APS, ts::AbstractPhaseEquil) = PhasePartition_equil(
param_set,
air_temperature(param_set, ts),
air_density(param_set, ts),
total_specific_humidity(param_set, ts),
typeof(ts),
)
function PhasePartition(param_set::APS, ts::AbstractPhaseEquil)
T = air_temperature(param_set, ts)
ρ = air_density(param_set, ts)
q_tot = total_specific_humidity(param_set, ts)
phase_type = typeof(ts)
p_vap_sat = saturation_vapor_pressure(param_set, phase_type, T)
liquid_frac = liquid_fraction(param_set, T, phase_type) # fraction of condensate that is liquid

return PhasePartition_equil(param_set, T, ρ, q_tot, p_vap_sat, liquid_frac)
end
PhasePartition(param_set::APS, ts::AbstractPhaseNonEquil) = ts.q

function ∂e_int_∂T(
Expand All @@ -1358,11 +1385,12 @@ function ∂e_int_∂T(
T_i::FT = TP.T_icenuc(param_set)
n_i::FT = TP.pow_icenuc(param_set)

q = PhasePartition_equil(param_set, T, ρ, q_tot, phase_type)
p_vap_sat = saturation_vapor_pressure(param_set, phase_type, T)
λ = liquid_fraction(param_set, T, phase_type)
q = PhasePartition_equil(param_set, T, ρ, q_tot, p_vap_sat, λ)
q_c = condensate(q)
cvm = cv_m(param_set, q)
q_vap_sat = q_vap_saturation(param_set, T, ρ, phase_type)
λ = liquid_fraction(param_set, T, phase_type)
q_vap_sat = q_vap_saturation_from_density(param_set, T, ρ, p_vap_sat)
L = λ * LH_v0 + (1 - λ) * LH_s0

∂λ_∂T = (T_i < T < T_f) ? (1 / (T_f - T_i))^n_i * n_i * T^(n_i - 1) : FT(0)
Expand Down