Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add SSIM #133

Open
wants to merge 1 commit into
base: 6.2
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions reflow/solver.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from torch import autocast
from torch.cuda.amp import GradScaler
from nsf_hifigan.nvSTFT import STFT
from reflow.ssim import calculate_ssim

def calculate_mel_snr(gt_mel, pred_mel):
# 计算误差图像
Expand Down Expand Up @@ -47,6 +48,15 @@ def calculate_mel_psnr(gt_mel, pred_mel):
psnr = 10 * torch.log10(max_power / mse)
return psnr

def calculate_mel_ssim(gt_mel, pred_mel):
# B × M × T
pred_mel = pred_mel.transpose(-1, -2)
pred_mel = pred_mel[:, None]
gt_mel = gt_mel.transpose(-1, -2)
gt_mel = gt_mel[:, None]
ssim = calculate_ssim(pred_mel, gt_mel, size_average=True)
return ssim

def test(args, model, vocoder, loader_test, saver):
print(' [*] testing...')
model.eval()
Expand All @@ -61,6 +71,7 @@ def test(args, model, vocoder, loader_test, saver):
mel_val_snr_all = 0
mel_val_psnr_all = 0
mel_val_sisnr_all = 0
mel_val_ssim_all = 0

# intialization
num_batches = len(loader_test)
Expand Down Expand Up @@ -157,6 +168,7 @@ def test(args, model, vocoder, loader_test, saver):
mel_val_snr_all += calculate_mel_snr(gt_mel_norm, pre_mel_norm).detach().cpu().numpy()
mel_val_psnr_all += calculate_mel_psnr(gt_mel_norm, pre_mel_norm).detach().cpu().numpy()
mel_val_sisnr_all += calculate_mel_si_snr(gt_mel_norm, pre_mel_norm).detach().cpu().numpy()
mel_val_ssim_all += calculate_mel_ssim(gt_mel_norm, pre_mel_norm).detach().cpu().numpy()
mel_val_mse_all_num += 1

# report
Expand All @@ -166,6 +178,7 @@ def test(args, model, vocoder, loader_test, saver):
mel_val_snr_all /= mel_val_mse_all_num
mel_val_psnr_all /= mel_val_mse_all_num
mel_val_sisnr_all /= mel_val_mse_all_num
mel_val_ssim_all /= mel_val_mse_all_num

# check
print(' [test_ddsp_loss] test_ddsp_loss:', test_ddsp_loss)
Expand All @@ -187,6 +200,10 @@ def test(args, model, vocoder, loader_test, saver):
saver.log_value({
'validation/mel_val_sisnr': mel_val_sisnr_all
})
print(' Mel Val SSIM', mel_val_ssim_all)
saver.log_value({
'validation/mel_val_ssim': mel_val_ssim_all
})
return test_ddsp_loss, test_reflow_loss


Expand Down
58 changes: 58 additions & 0 deletions reflow/ssim.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
"""
Adapted from https://github.com/Po-Hsun-Su/pytorch-ssim
"""

import torch
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from math import exp


window = None


def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()


def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window


def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)

mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2

sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2

C1 = 0.01 ** 2
C2 = 0.03 ** 2

ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))

if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1)


def calculate_ssim(img1, img2, window_size=11, size_average=True):
(_, channel, _, _) = img1.size()
global window
if window is None:
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)