Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

updated codebase #6

Merged
merged 3 commits into from
Jun 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion mobula/layers/BatchNorm.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,12 @@

class BatchNorm(Layer):
def __init__(self, model, *args, **kwargs):
Layer.__init__(self, model, *args, **kwargs)
super().__init__(model, *args, **kwargs)
self.momentum = kwargs.get('momentum', 0.9)
self.eps = kwargs.get('eps', 1e-5)
self.use_global_stats = kwargs.get('use_global_stats', False)
self.axis = kwargs.get('axis', 1)

def reshape(self):
assert 0 <= self.axis < self.X.ndim
self.cshape = [1] * self.X.ndim
Expand All @@ -21,6 +22,7 @@ def reshape(self):
# Current Mean
self.moving_mean = np.zeros(self.cshape)
self.moving_var = np.ones(self.cshape)

def forward(self):
if self.is_training() and not self.use_global_stats:
# The mean and var of this batch
Expand All @@ -38,6 +40,7 @@ def forward(self):
self.nx = (self.X - self.batch_mean) * self.nd
# Scale and Shift
self.Y = np.multiply(self.nx, self.W) + self.b

def backward(self):
# Compute self.dX, self.dW, self.db
dnx = np.multiply(self.dY, self.W)
Expand All @@ -48,9 +51,11 @@ def backward(self):
self.dX = dnx * self.nd + dvar * xsm * (2.0 / m) + dmean * (1.0 / m)
self.dW = np.sum(self.dY * self.nx, self.valid_axes, keepdims = True)
self.db = np.sum(self.dY, self.valid_axes, keepdims = True)

@property
def params(self):
return [self.W, self.b, self.moving_mean, self.moving_var]

@property
def grads(self):
return [self.dW, self.db]
6 changes: 4 additions & 2 deletions mobula/layers/ContrastiveLoss.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,11 @@
from .LossLayer import *
import numpy as np

class ContrastiveLoss(LossLayer):
def __init__(self, models, *args, **kwargs):
# models = [X1, X2, sim]
LossLayer.__init__(self, models, *args, **kwargs)
super().__init__(models, *args, **kwargs)
self.margin = kwargs.get("margin", 1.0)

def forward(self):
self.sim = (self.X[2] == 1).ravel()
n = self.sim.shape[0]
Expand All @@ -14,6 +15,7 @@ def forward(self):
df = (self.margin - self.dist).ravel()
self.bdf = ((~self.sim) & (df > 0))
self.Y = (np.sum(dist_sq[self.sim]) + np.sum(np.square(df[self.bdf]))) / (2.0 * n)

def backward(self):
n = self.sim.shape[0]
dX = np.zeros(self.X[0].shape)
Expand Down
12 changes: 8 additions & 4 deletions mobula/layers/CrossEntropy.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,16 @@
from .LossLayer import *
import numpy as np

class CrossEntropy(LossLayer):
def __init__(self, model, *args, **kwargs):
LossLayer.__init__(self, model, *args, **kwargs)
super().__init__(model, *args, **kwargs)

def reshape(self):
self.Y = 0.0

def forward(self):
self.Y = np.mean(- np.multiply(self.label, np.log(self.X)) - \
np.multiply(1.0 - self.label, np.log(1.0 - self.X)))
self.Y = np.mean(- np.multiply(self.label, np.log(self.X + 1e-15)) - \
np.multiply(1.0 - self.label, np.log(1.0 - self.X + 1e-15)))

def backward(self):
self.dX = (-self.label / self.X + (1.0 - self.label) / (1.0 - self.X)) * self.dY
self.dX = (-self.label / (self.X + 1e-15) + (1.0 - self.label) / (1.0 - self.X + 1e-15)) * self.dY
6 changes: 5 additions & 1 deletion mobula/layers/MSE.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,16 @@
from .LossLayer import *
import numpy as np

class MSE(LossLayer):
def __init__(self, model, *args, **kwargs):
LossLayer.__init__(self, model, *args, **kwargs)
super().__init__(model, *args, **kwargs)

def reshape(self):
self.Y = 0.0

def forward(self):
self.d = (self.X - self.label)
self.Y = np.mean(np.square(self.d))

def backward(self):
self.dX = (2 * self.d) * self.dY
6 changes: 5 additions & 1 deletion mobula/layers/Tanh.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,15 @@
from .Layer import *
import numpy as np

class Tanh(Layer):
def __init__(self, model, *args, **kwargs):
Layer.__init__(self, model, *args, **kwargs)
super().__init__(model, *args, **kwargs)

def reshape(self):
self.Y = np.zeros(self.X.shape)

def forward(self):
self.Y = 2.0 / (1.0 + np.exp(-2.0 * self.X)) - 1.0

def backward(self):
self.dX = np.multiply(self.dY, 1.0 - np.square(self.Y))
2 changes: 2 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
numpy
numpy_groupies
50 changes: 25 additions & 25 deletions setup.py
Original file line number Diff line number Diff line change
@@ -1,29 +1,29 @@
from setuptools import setup, find_packages

setup(
name = 'mobula',
version = '1.0.1',
description = 'A Lightweight & Flexible Deep Learning (Neural Network) Framework in Python',
author = 'wkcn',
author_email = '[email protected]',
url = 'https://github.com/wkcn/mobula',
packages = find_packages(),
package_data = {
'' : ['*.md'],
'docs' : ['docs/*.md'],
'examples' : ['examples/*.py']
},
keywords = 'Deep Learning Framework in Python',
license = 'MIT',
classifiers = [
'Programming Language :: Python',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 3',
'Topic :: Scientific/Engineering :: Mathematics',
'License :: OSI Approved :: MIT License'
],
install_requires = [
'numpy',
'numpy_groupies'
]
name='mobula',
version='1.0.2',
description='A Lightweight & Flexible Deep Learning (Neural Network) Framework in Python',
author='wkcn',
author_email='[email protected]',
url='https://github.com/wkcn/mobula',
packages=find_packages(),
package_data={
'': ['*.md'],
'docs': ['docs/*.md'],
'examples': ['examples/*.py']
},
keywords='Deep Learning Framework in Python',
license='MIT',
classifiers=[
'Programming Language :: Python',
'Programming Language :: Python :: 3',
'Topic :: Scientific/Engineering :: Mathematics',
'License :: OSI Approved :: MIT License'
],
install_requires=[
'numpy',
'numpy_groupies'
],
python_requires='>=3.6',
)
Loading