Skip to content

Commit

Permalink
Updating documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
vbertone committed Aug 18, 2024
1 parent 18dd659 commit 8cfd62f
Show file tree
Hide file tree
Showing 21 changed files with 128 additions and 34 deletions.
Binary file modified docs/latex/pdf/CCDIS.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/DrellYanTMD.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/EvolDIS.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/EvolutionCode.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/GPDs.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/IntegralStucture.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/Interpolation.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/JetTMD.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/MSbarMass.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/MatchingConditions.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/QCD_QED_common_basis.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/SIDISCollinear.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/SIDISTMD.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/Statistics.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/StructureFunctions.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/TMDEvolution.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/Transversity.pdf
Binary file not shown.
156 changes: 125 additions & 31 deletions docs/latex/src/IntegralStucture.tex
Original file line number Diff line number Diff line change
Expand Up @@ -515,6 +515,7 @@ \subsection{Double convolutions}
(incomplete).

\subsubsection{Semi-inclusive deep inelastic scattering (SIDIS)}
\label{subsec:sidisnlo}

the structure of the ($p_T$-integrated) SIDIS cross section and the
expressions of the respective hard coefficient functions can be found
Expand Down Expand Up @@ -878,7 +879,7 @@ \subsubsection{Semi-inclusive deep inelastic scattering (SIDIS)}
\mathcal{D}_i(y)=\left[\frac{\ln^i(1-y)}{1-y}\right]_{x}\,,
\end{equation}
that upon integration between zero and $x$ (rather than between zero
and one0 acts as standard $+$-distribution:
and one) acts as standard $+$-distribution:
\begin{equation}
\int_x^1 dy\, \mathcal{D}_i(y) f(y) = \int_x^1 dy
\left[\frac{\ln^i(1-y)}{1-y}\right]_{x}f(y) = \int_x^1 dy\frac{\ln^i(1-y)}{1-y}\left[f(y)-f(1)\right]\,,
Expand All @@ -895,8 +896,8 @@ \subsubsection{Semi-inclusive deep inelastic scattering (SIDIS)}
\displaystyle O(y_1,y_2)&=&\displaystyle \left[C_{\rm LL}+\sum_{n}C_{\rm LS}^{(n)}\mathcal{K}_n(x_1) +\sum_{m}C_{\rm LS}^{(m)}\mathcal{K}_m(x_2)+\sum_{n,m}C_{\rm SS}^{(m)}\mathcal{K}_n(x_1)\mathcal{K}_m(x_2)\right]\delta(1-y_1)
\delta(1-y_2)\\
\\
&+&\displaystyle \delta(1-y_1)\left[\sum_{m}C_{\rm
LS}^{(m)}\mathcal{D}_m(y_2)+\sum_{n,m}C_{\rm SS}^{(n,m)}\mathcal{K}_n(x_1)\mathcal{D}_m(y_2)\right]\\
&+&\displaystyle \delta(1-y_1)\left[\sum_{m} C_{\rm
LS}^{(m)}\mathcal{D}_m(y_2)+\sum_{n,m}C_{\rm SS}^{(n,m)}\mathcal{K}_n(x_1) \mathcal{D}_m(y_2)\right]\\
\\
&+&\displaystyle \delta(1-y_1)\left[C_{\rm LR}(y_2)+\sum_{n}\mathcal{K}_{n}(x_1)C_{\rm SR}(y_2)\right]\\
\\
Expand Down Expand Up @@ -946,47 +947,89 @@ \subsubsection{Semi-inclusive deep inelastic scattering (SIDIS)}
O(y_1,y_2) d^{(1)}\left(\frac{x_1}{y_1}\right)
d^{(2)}\left(\frac{x_2}{y_2}\right)\,.
\end{equation}
Applying the usual interpolation procedure gives:
The usual interpolation procedure over two independent grids
$\{x^{(1)}_{\beta}\}$ and $\{x^{(2)}_{\delta}\}$, with
$\beta=0,\dots, N_x^{(1)}$ and $\delta=0,\dots, N_x^{(2)}$, with
interpolation degrees $k_1$ and $k_2$, respectively, gives:
\begin{equation}
\begin{array}{rcl}
F(x_\beta,x_\delta) &=&\displaystyle
\int_{x_\beta}^1dy_1\int_{x_\delta}^1dy_2\,
O(y_1,y_2) \left[\frac{x_\beta}{y_1}d^{(1)}\left(\frac{x_\beta}{y_1}\right)\right]
\left[\frac{x_\delta}{y_2}d^{(2)}\left(\frac{x_\delta}{y_2}\right)\right]\\
F(x^{(1)}_{\beta},x^{(2)}_{\delta}) &=&\displaystyle
\int_{x^{(1)}_{\beta}}^1dy_1\int_{x^{(2)}_{\delta}}^1dy_2\,
O(y_1,y_2) \left[\frac{x^{(1)}_{\beta}}{y_1}d^{(1)}\left(\frac{x^{(1)}_{\beta}}{y_1}\right)\right]
\left[\frac{x^{(2)}_{\delta}}{y_2}d^{(2)}\left(\frac{x^{(2)}_{\delta}}{y_2}\right)\right]\\
\\
&=&\displaystyle
\sum_{\alpha=0}^{N_x}\sum_{\gamma=0}^{N_x} \overline{d}^{(1)}_\alpha
\overline{d}^{(2)}_\gamma \left[\int_{x_\beta}^1 dy_1 \, w_{\alpha}^{(k)}\left(\frac{x_\beta}{y_1}\right) \int_{x_\delta}^1 dy_2\, w_{\gamma}^{(k)}\left(\frac{x_\delta}{y_2}\right)\,
\overline{d}^{(2)}_\gamma \left[\int_{x^{(1)}_{\beta}}^1 dy_1 \, w_{\alpha}^{(k_1)}\left(\frac{x^{(1)}_{\beta}}{y_1}\right) \int_{x^{(2)}_{\delta}}^1 dy_2\, w_{\gamma}^{(k_2)}\left(\frac{x^{(2)}_{\delta}}{y_2}\right)\,
O(y_1,y_2)\right]\,.
\end{array}
\label{eq:doubleconvolution}
\end{equation}
This allows us to defines a ``double'' operator:
\begin{equation}
\Theta^{\beta\alpha,\delta\gamma}=\int_{x_\beta}^1 dy_1 \, w_{\alpha}^{(k)}\left(\frac{x_\beta}{y_1}\right) \int_{x_\delta}^1 dy_2\, w_{\gamma}^{(k)}\left(\frac{x_\delta}{y_2}\right)\,
O(y_1,y_2)\,,
\Theta^{\beta\alpha,\delta\gamma}=\int_{x^{(1)}_{\beta}}^1 dy_1 \int_{x^{(2)}_{\delta}}^1 dy_2\, w_{\alpha}^{(k_1)}\left(\frac{x^{(1)}_{\beta}}{y_1}\right) w_{\gamma}^{(k_2)}\left(\frac{x^{(2)}_{\delta}}{y_2}\right) O(y_1,y_2)\,,
\end{equation}
where the various $\mathcal{C}$ functions are involved as follows:
so that:
\begin{equation}
\small
\begin{array}{rcl}
\displaystyle \Theta^{\beta\alpha,\delta\gamma}&=&\displaystyle \delta_{\beta\alpha}\delta_{\delta\gamma}C_{\rm LL} \\
\\
&+&\displaystyle \delta_{\beta\alpha}\int_{x_\gamma}^1dy_2 \left\{w_\gamma^{(k)}\left(\frac{x_\delta}{y_2}\right)C_{\rm LS}(y_2)+w_\gamma^{(k)}\left(\frac{x_\delta}{y_2}\right) C_{\rm LR}(y_2)\right\}\\
\\
&+&\displaystyle
\int_{x_\alpha}^1dy_1\left\{w_\alpha^{(k)}\left(\frac{x_\beta}{y_1}\right)C_{\rm SL}(y_1) + w_\alpha^{(k)}\left(\frac{x_\beta}{y_1}\right)C_{\rm RL}(y_1) \right\}\delta_{\delta\gamma}\\
\\
&+&\displaystyle \int_{x_\alpha}^1dy_1 \int_{x_\gamma}^1dy_2
\bigg\{w_\alpha^{(k)}\left(\frac{x_\beta}{y_1}\right)w_\gamma^{(k)}\left(\frac{x_\delta}{y_2}\right)C_{\rm
SS}(y_1,y_2)+ w_\alpha^{(k)}\left(\frac{x_\beta}{y_1}\right)w_\gamma^{(k)}\left(\frac{x_\delta}{y_2}\right) C_{\rm SR}(y_1,y_2)\\
\\
&+&\displaystyle
w_\alpha^{(k)}\left(\frac{x_\beta}{y_1}\right)w_\rho^{(k)}\left(\frac{x_\gamma}{y_2}\right)C_{\rm RS}(y_1,y_2)+
w_\alpha^{(k)}\left(\frac{x_\beta}{y_1}\right) w_\gamma^{(k)}\left(\frac{x_\delta}{y_2}\right) C_{\rm RR}(y_1,y_2)\bigg\}\,.
\end{array}
F(x^{(1)}_{\beta},x^{(2)}_{\delta}) =\sum_{\alpha=0}^{N_x^{(1)}}\sum_{\gamma=0}^{N_x^{(2)}}\Theta^{\beta\alpha,\delta\gamma}\overline{d}^{(1)}_{\alpha}\overline{d}^{(2)}_{\gamma}\,,
\end{equation}
where:
\begin{equation}
\overline{d}^{(1)}_{\alpha} = x_\alpha d^{(1)}(x_\alpha)\,,\quad\mbox{and}\quad \overline{d}^{(2)}_{\gamma} = x_\gamma d^{(2)}(x_\gamma)\,.
\end{equation}
In Sect.~\ref{subsec:loggrid}, we will provide a thorough discussion
on how to implement a double operator in {\tt APFEL++}.
Now
% As we will see below in Sect.~\ref{subsec:loggrid}, due to the support
% of the interpolating functions $w$, the integration ranges in $y_1$
% and $y_2$ can be reduced and split as follows:
% \begin{equation}
% \int_{x^{(1)}_\beta}^1dy_1 \int_{x^{(2)}_\delta}^1dy_2\dots \rightarrow
% \sum_{j={\rm max}[0, \alpha + 1 - N^{(1)}_x]}^{{\rm min}[k_1, \alpha - \beta]}\sum_{l={\rm max}[0, \gamma + 1 - N^{(2)}_x]}^{{\rm min}[k_2, \gamma - \delta]}
% \int_{x^{(1)}_{\beta}/x^{(1)}_{\alpha-j+1}}^{x^{(1)}_{\beta}/x^{(1)}_{\alpha-j}}dy_1 \int_{x^{(2)}_{\delta}/x^{(2)}_{\gamma-l+1}}^{x^{(2)}_{\delta}/x^{(2)}_{\gamma-l}}dy_2\dots\,.
% \end{equation}
% Despite increasing the number of integrals, this procedure allows one
% to compute integrals of smooth functions only, thus making the whole
% numerical computation faster and more accurate.
% Considering that:
% \begin{equation}
% \int_{x^{(1)}_{\beta}}^1 dy_1 \, w_{\alpha}^{(k_1)}\left(\frac{x^{(1)}_{\beta}}{y_1}\right)\delta(1-y_1)=\delta_{\beta\alpha}\,,\quad\mbox{and}\quad \int_{x^{(2)}_{\delta}}^1 dy_2 \,w_{\gamma}^{(k_2)}\left(\frac{x^{(2)}_{\delta}}{y_2}\right) \delta(1-y_2)=\delta_{\delta\gamma}\,,
% \end{equation}
% and that:\footnote{Note that it should be possible to compute the
% integrals below analytically making the code potentially
% faster. However, this only concernes the initialisation
% phase. Therefore, for now, we compute them numerically.}
% \begin{equation}
% \begin{array}{rcl}
% \displaystyle\int_{x^{(1)}_{\beta}}^1 dy_1 \,
% w_{\alpha}^{(k_1)}\left(\frac{x^{(1)}_{\beta}}{y_1}\right)\mathcal{D}_n(y_1)&=&\displaystyle\int_{x^{(1)}_{\beta}}^1 dy_1\,\frac{\ln^n(1-y_1)}{1-y_1}\left[w_{\alpha}^{(k_1)}\left(\frac{x^{(1)}_{\beta}}{y_1}\right)-\delta_{\beta\alpha}\right]\,,\\
% \\
% \displaystyle \int_{x^{(2)}_{\delta}}^1 dy_2 \,w_{\gamma}^{(k_1)}\left(\frac{x^{(2)}_{\delta}}{y_2}\right)\mathcal{D}_n(y_2)&=&\displaystyle\int_{x^{(2)}_{\delta}}^1 dy_2 \, \frac{\ln^n(1-y_2)}{1-y_2}\left[w_{\gamma}^{(k_1)}\left(\frac{x^{(2)}_{\delta}}{y_2}\right)-\delta_{\delta\gamma}\right]\,,
% \end{array}
% \end{equation}
% the various $C$ functions/coefficients, that define the function $O$
% in Eq.~(\ref{eq:DoubleFuncStructGen}), are involved in the computation
% of $\Theta^{\beta\alpha,\delta\gamma}$ as follows:
% \begin{equation}
% \small
% \begin{array}{rcl}
% \displaystyle \Theta^{\beta\alpha,\delta\gamma}&=&\displaystyle \delta_{\beta\alpha}\delta_{\delta\gamma}C_{\rm LL} \\
% \\
% &+&\displaystyle \delta_{\beta\alpha}\int_{x_\gamma}^1dy_2 \left\{w_\gamma^{(k_1)}\left(\frac{x^{(2)}_{\delta}}{y_2}\right)C_{\rm LS}(y_2)+w_\gamma^{(k_2)}\left(\frac{x^{(2)}_{\delta}}{y_2}\right) C_{\rm LR}(y_2)\right\}\\
% \\
% &+&\displaystyle
% \int_{x_\alpha}^1dy_1\left\{w_\alpha^{(k_1)}\left(\frac{x^{(1)}_{\beta}}{y_1}\right)C_{\rm SL}(y_1) + w_\alpha^{(k_2)}\left(\frac{x^{(1)}_{\beta}}{y_1}\right)C_{\rm RL}(y_1) \right\}\delta_{\delta\gamma}\\
% \\
% &+&\displaystyle \int_{x_\alpha}^1dy_1 \int_{x_\gamma}^1dy_2
% \bigg\{w_\alpha^{(k_1)}\left(\frac{x^{(1)}_{\beta}}{y_1}\right)w_\gamma^{(k_2)}\left(\frac{x^{(2)}_{\delta}}{y_2}\right)C_{\rm
% SS}(y_1,y_2)+ w_\alpha^{(k_1)}\left(\frac{x^{(1)}_{\beta}}{y_1}\right)w_\gamma^{(k_2)}\left(\frac{x^{(2)}_{\delta}}{y_2}\right) C_{\rm SR}(y_1,y_2)\\
% \\
% &+&\displaystyle
% w_\alpha^{(k_1)}\left(\frac{x^{(1)}_{\beta}}{y_1}\right)w_\rho^{(k_2)}\left(\frac{x_\gamma}{y_2}\right)C_{\rm RS}(y_1,y_2)+
% w_\alpha^{(k_1)}\left(\frac{x^{(1)}_{\beta}}{y_1}\right) w_\gamma^{(k_2)}\left(\frac{x^{(2)}_{\delta}}{y_2}\right) C_{\rm RR}(y_1,y_2)\bigg\}\,.
% \end{array}
% \end{equation}
\subsubsection{Drell Yan (DY)}
Expand Down Expand Up @@ -1182,7 +1225,7 @@ \subsubsection{Drell Yan (DY)}
\newpage
\subsection{Advantage of a logarithmic grid}
\subsection{Advantage of a logarithmic grid}\label{subsec:loggrid}
Given the particular structure of the integral $I$ in
Eq.~(\ref{eq:ZMconv}), it turns out to be very convenient to use a
Expand Down Expand Up @@ -1328,6 +1371,10 @@ \subsection{Advantage of a logarithmic grid}
O(y)=L\delta(1-y)+\sum_{n}S^{(n)}\left[\frac{\ln^n(1-y)}{1-y}\right]_++R(y)\,.
\end{equation}
Each of the three terms on the r.h.s. upon integration produce:
\footnote{Note that it should be possible to compute the second of the
integrals below analytically making the code potentially
faster. However, this only concernes the initialisation
phase. Therefore, for now, we compute them numerically.}
\begin{equation}
\small
\begin{array}{rcl}
Expand Down Expand Up @@ -1488,6 +1535,53 @@ \subsection{Advantage of a logarithmic grid}
\end{array}
\end{equation}
Having introduced the double operator as a new object, we are forced
to introduce yet another object: the double distribution. Effectively,
we have already implicitly done so in Eq.~(\ref{eq:doubleconvolution})
where the convolution of a double operator with two single
distributions:
\begin{equation}
F_{\beta,\delta}=\Theta^{\beta\alpha,\delta\gamma}\overline{d}^{(1)}_{\alpha}\overline{d}^{(2)}_{\gamma}\,,
\end{equation}
(where summation signs are understood) gives rise to the double
distribution $F_{\beta,\delta}$.\footnote{Despite having two indices,
double distributions should not be confused with single
operators. Indeed, in a double distribution the two indices run on
different interpolation grids, while in a single operator they run
on the same grid. Notationally, we will distinguish them by
separating indices that run on different grids by a comma (as we
already do for double operators).} . As a matter of fact, a bilinear
combination of single distributions is a particular case of double
distribution:
\begin{equation}
D_{\alpha,\gamma}=\sum_j\alpha_j \overline{d}^{(1)}_{j,\alpha}\overline{d}^{(2)}_{j,\gamma}\,.
\end{equation}
where $\alpha_i$ are scalar coefficients. Similarly, a bilinear
combination of single operators is a particular case of double
operator. This is exactly the kind of objects that we have used in
Sect.~\ref{subsec:sidisnlo} to implement SIDIS at NLO accuracy, but
the complications of NNLO corrections force us to generalise that
strategy. This implies that the convolution of a double distribution
with a double operator produces a double distribution:
\begin{equation}
F_{\beta,\delta}=\Theta^{\beta\alpha,\delta\gamma}D_{\alpha,\gamma}\,.
\end{equation}
In conclusion, we end up with four fundamental objects: single
distributions $d$, single operators $O$, double distributions $D$, and
double operators $\Theta$. We now need to define their algebra,
\textit{i.e.} the way the combine pairwise upon convolution. In doin
so, we will omit the grid indices and indicate the convolution by
means fo the symbol $\otimes$. Many possible combinations are possible
but some of them are not practically useful.\footnote{For example, it
is possible to convolute a single distribution with a double
operator. However, this convolutions would give rise to a ``hybrid''
object that is partially a single distribution and partially a
single operator. Being any such object of scarce utility (so far),
we avoid to introduce it and also avoid considering all convolutions
that generate it.}
\section{GPD-related integrals}
When considering computations involving GPDs, another kind of integral
Expand Down
2 changes: 1 addition & 1 deletion src/kernel/doubleobject.cc
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ namespace apfel
return os;
}

// Specializations
// Specialisations
//_________________________________________________________________________________
template class DoubleObject<Distribution>;
template class DoubleObject<Operator>;
Expand Down
2 changes: 1 addition & 1 deletion src/kernel/observable.cc
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ namespace apfel
return _ConvPair[ip].CoefficientFunctions;
}

// Specializations
// Specialisations
//_________________________________________________________________________________
template class Observable<Distribution>;
template class Observable<Operator>;
Expand Down
2 changes: 1 addition & 1 deletion src/kernel/tabulateobject.cc
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ namespace apfel
t.stop();
}

// Specializations
// Specialisations
//_________________________________________________________________________________
template class TabulateObject<double>;
template class TabulateObject<matrix<double>>;
Expand Down

0 comments on commit 8cfd62f

Please sign in to comment.