Skip to content

Deep Semi-Supervised Object Detection for Extreme Weather Events

Notifications You must be signed in to change notification settings

saebrahimi/hur-detect

 
 

Repository files navigation

#Prerequisites:

  • lasagne
  • theano
  • scikit-learn
  • h5py

#running the notebook:

  • open up hur_main.ipynb
  • run it

#Instructions for running from terminal:

  • module load deeplearning only needed if you are on Cori
  • python hur_main.py and any below command line args

#Instructions for running on NERSC's Cori batch system:

  • sbatch hur_main.sl and the below command line arguments

#Command line args

--shuffle SHUFFLE shuffle (default: False)

--dropout_p DROPOUT_P dropout_p (default: 0)

--get_ims GET_IMS get_ims (default: False)

--labels_only LABELS_ONLY labels_only (default: True)

--yolo_load_path YOLO_LOAD_PATH yolo_load_path (default: None)

--num_extra_conv NUM_EXTRA_CONV num_extra_conv (default: 0)

--save_path SAVE_PATH save_path (default: None)

--filters_scale FILTERS_SCALE filters_scale (default: 1.0)

--scale_factor SCALE_FACTOR scale_factor (default: 64)

--num_ims_to_plot NUM_IMS_TO_PLOT num_ims_to_plot (default: 8)

--input_shape INPUT_SHAPE input_shape (default: (None, 16, 768, 1152))

--save_weights SAVE_WEIGHTS save_weights (default: True)

--use_fc USE_FC use_fc (default: False)

--filter_dim FILTER_DIM filter_dim (default: 5)

--coord_penalty COORD_PENALTY coord_penalty (default: 5)

--box_sizes BOX_SIZES box_sizes (default: [(64, 64)])

--val_years VAL_YEARS val_years (default: [1982, 1986])

--metadata_dir METADATA_DIR metadata_dir (default: /storeSSD/eracah/data/metadata/)

--batch_norm BATCH_NORM batch_norm (default: False)

--tr_years TR_YEARS tr_years (default: [1979, 1980, 1981, 1983, 1985, 1987])

--epochs EPOCHS epochs (default: 10000)

--size_penalty SIZE_PENALTY size_penalty (default: 7)

--num_layers NUM_LAYERS num_layers (default: 6)

--num_test_days NUM_TEST_DAYS num_test_days (default: 365)

--weight_decay WEIGHT_DECAY weight_decay (default: 0.0005)

--3D 3D 3D (default: False)

--ae_load_path AE_LOAD_PATH ae_load_path (default: None)

--lambda_ae LAMBDA_AE lambda_ae (default: 10)

--data_dir DATA_DIR data_dir (default: /storeSSD/eracah/data/netcdf_ims)

--test TEST test (default: False)

--time_chunks_per_example TIME_CHUNKS_PER_EXAMPLE time_chunks_per_example (default: 1)

--no_plots NO_PLOTS no_plots (default: False)

--learning_rate LEARNING_RATE learning_rate (default: 0.0001)

--batch_size BATCH_SIZE batch_size (default: 1)

--get_fmaps GET_FMAPS get_fmaps (default: False)

--yolo_batch_norm YOLO_BATCH_NORM yolo_batch_norm (default: True)

--test_years TEST_YEARS test_years (default: [1984])

--iou_thresh IOU_THRESH iou_thresh (default: 0.1)

--num_classes NUM_CLASSES num_classes (default: 4)

--conf_thresh CONF_THRESH conf_thresh (default: 0.8)

--nonobj_penalty NONOBJ_PENALTY nonobj_penalty (default: 0.5)

--num_tr_days NUM_TR_DAYS num_tr_days (default: 365)

--ignore_plot_fails IGNORE_PLOT_FAILS ignore_plot_fails (default: 1)

About

Deep Semi-Supervised Object Detection for Extreme Weather Events

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 63.8%
  • Python 34.8%
  • Shell 1.4%