Skip to content

Commit

Permalink
updated docs
Browse files Browse the repository at this point in the history
  • Loading branch information
rmj3197 committed Jun 4, 2024
1 parent 0f05c02 commit 26339f5
Show file tree
Hide file tree
Showing 22 changed files with 215 additions and 203 deletions.
10 changes: 5 additions & 5 deletions QuadratiK/datasets/_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def load_wireless_data(desc=False, return_X_y=False, as_dataframe=True, scaled=F
(n_samples,) containing the target samples.
data : pandas.DataFrame, if as_dataframe is True
Dataframe of the data with shape (n_samples, n_features + class)
Dataframe of the data with shape (n_samples, n_features + class).
(desc, data, target) : tuple, if desc is True and return_X_y is True
A tuple of description and two numpy.ndarray. The first containing a 2D
Expand All @@ -60,7 +60,7 @@ def load_wireless_data(desc=False, return_X_y=False, as_dataframe=True, scaled=F
User Localization in an Indoor Environment Using Fuzzy Hybrid of Particle Swarm Optimization
& Gravitational Search Algorithm with Neural Networks. In: Deep, K., et al. Proceedings of
Sixth International Conference on Soft Computing for Problem Solving. Advances in Intelligent
Systems and Computing, vol 546. Springer, Singapore. https://doi.org/10.1007/978-981-10-3322-3_27
Systems and Computing, vol 546. Springer, Singapore. https://doi.org/10.1007/978-981-10-3322-3_27.
Source
-------
Expand Down Expand Up @@ -115,7 +115,7 @@ def load_wisconsin_breast_cancer_data(
desc=False, return_X_y=False, as_dataframe=True, scaled=False
):
"""
The wisconsin breast cancer dataset data frame has 569 rows and 31 columns. The first 30 variables
The Wisconsin breast cancer dataset data frame has 569 rows and 31 columns. The first 30 variables
report the features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass.
They describe characteristics of the cell nuclei present in the image.
The last column indicates the class labels (Benign = 0 or Malignant = 1).
Expand Down Expand Up @@ -153,7 +153,7 @@ def load_wisconsin_breast_cancer_data(
(n_samples,) containing the target samples.
data : pandas.DataFrame, if as_dataframe is True
Dataframe of the data with shape (n_samples, n_features + class)
Dataframe of the data with shape (n_samples, n_features + class).
(desc, data, target) : tuple, if desc is True and return_X_y is True
A tuple of description and two numpy.ndarray. The first containing a 2D
Expand Down Expand Up @@ -293,7 +293,7 @@ def load_wine_data(desc=False, return_X_y=False, as_dataframe=True, scaled=False
(n_samples,) containing the target samples.
data : pandas.DataFrame, if as_dataframe is True
Dataframe of the data with shape (n_samples, n_features + class)
Dataframe of the data with shape (n_samples, n_features + class).
(desc, data, target) : tuple, if desc is True and return_X_y is True
A tuple of description and two numpy.ndarray. The first containing a 2D
Expand Down
30 changes: 15 additions & 15 deletions QuadratiK/kernel_test/_cv_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,33 +40,33 @@ def cv_twosample(
The quantile to use for critical value estimation.
data_pool: numpy.ndarray
ndarray containing the data to be used in the test
ndarray containing the data to be used in the test.
size_x : int
The number of rows in the data_pool corresponding to group X
The number of rows in the data_pool corresponding to group X.
size_y : int
The number of rows in the data_pool corresponding to group Y
The number of rows in the data_pool corresponding to group Y.
h : float
The tuning parameter for the kernel test
The tuning parameter for the kernel test.
method : str
Method to use for computing the critical value
(one of bootstrap, permutation, or subsampling)
(one of bootstrap, permutation, or subsampling).
b : float, optional
Subsampling block size (only used if method is subsampling)
Subsampling block size (only used if method is subsampling).
random_state : int, None, optional.
Seed for random number generation. Defaults to None
Seed for random number generation. Defaults to None.
n_jobs : int, optional
n_jobs specifies the maximum number of concurrently
running workers. If 1 is given, no joblib parallelism
is used at all, which is useful for debugging. For more
information on joblib n_jobs refer to -
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html.
Returns
-------
Expand All @@ -76,7 +76,7 @@ def cv_twosample(
References
-----------
Markatou Marianthi, Saraceno Giovanni, Chen Yang (2023). “Two- and k-Sample Tests Based on
Quadratic Distances.” Manuscript, (Department of Biostatistics, University at Buffalo)
Quadratic Distances.” Manuscript, (Department of Biostatistics, University at Buffalo).
"""
if method == "bootstrap":
Expand Down Expand Up @@ -147,14 +147,14 @@ def cv_normality(
The quantile of the distribution used to select the critical value.
random_state : int, None, optional.
Seed for random number generation. Defaults to None
Seed for random number generation. Defaults to None.
n_jobs : int, optional
n_jobs specifies the maximum number of concurrently
running workers. If 1 is given, no joblib parallelism
is used at all, which is useful for debugging. For more
information on joblib n_jobs refer to -
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html.
Returns
-------
Expand All @@ -180,7 +180,7 @@ def cv_ksample(
n_jobs=8,
):
"""
Compute the critical value for k-sample kernel tests
Compute the critical value for k-sample kernel tests.
Parameters
--------------
Expand Down Expand Up @@ -208,14 +208,14 @@ def cv_ksample(
(one of "bootstrap", "permutation" or "subsampling").
random_state : int, None, optional.
Seed for random number generation. Defaults to None
Seed for random number generation. Defaults to None.
n_jobs : int, optional
n_jobs specifies the maximum number of concurrently
running workers. If 1 is given, no joblib parallelism
is used at all, which is useful for debugging. For more
information on joblib n_jobs refer to -
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html.
Returns
---------
Expand All @@ -226,7 +226,7 @@ def cv_ksample(
References
-----------
Markatou Marianthi, Saraceno Giovanni, Chen Yang (2023). “Two- and k-Sample Tests Based on
Quadratic Distances.” Manuscript, (Department of Biostatistics, University at Buffalo)
Quadratic Distances.” Manuscript, (Department of Biostatistics, University at Buffalo).
"""
sizes = np.unique(y, return_counts=True)[1]
n = len(y)
Expand Down
Loading

0 comments on commit 26339f5

Please sign in to comment.