Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for CUDA-based GPU build #3160

Merged
merged 124 commits into from
Sep 20, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
124 commits
Select commit Hold shift + click to select a range
328a9f0
Initial CUDA work
austinpagan Mar 30, 2020
895d6e4
Initial CUDA work
austinpagan Mar 30, 2020
fc981bf
Initial CUDA work
austinpagan Mar 30, 2020
581ce4a
Initial CUDA work
austinpagan Mar 30, 2020
3f98c73
Initial CUDA work
austinpagan Mar 30, 2020
2ec9a41
Initial CUDA work
austinpagan Mar 30, 2020
1023182
Initial CUDA work
austinpagan Mar 31, 2020
e50e4be
Initial CUDA work
austinpagan Mar 31, 2020
3d62018
Initial CUDA work
austinpagan Mar 31, 2020
7a6bf33
Initial CUDA work
ChipKerchner Mar 31, 2020
01b3226
Initial CUDA work
ChipKerchner Apr 1, 2020
64dbb6b
Initial CUDA work
ChipKerchner Apr 2, 2020
e17b345
Initial CUDA work
austinpagan Apr 2, 2020
32825e5
Initial CUDA work
ChipKerchner Apr 2, 2020
169a734
Initial CUDA work
ChipKerchner Apr 2, 2020
3c83274
Initial CUDA work
austinpagan Apr 3, 2020
5b3f36a
Initial CUDA work
austinpagan Apr 6, 2020
91a312f
Initial CUDA work
ChipKerchner Apr 7, 2020
b05afeb
Initial CUDA work
austinpagan Apr 15, 2020
0136317
Initial CUDA work
austinpagan Apr 16, 2020
f4b1057
Initial CUDA work
austinpagan Apr 20, 2020
82e4968
Initial CUDA work
austinpagan Apr 20, 2020
512a0a3
Initial CUDA work
austinpagan Apr 21, 2020
29f6979
Initial CUDA work
austinpagan Apr 21, 2020
4d89fd7
Initial CUDA work
ChipKerchner Apr 22, 2020
e10a467
Initial CUDA work
ChipKerchner Apr 22, 2020
911c1b3
Initial CUDA work
austinpagan Apr 22, 2020
1870480
Initial CUDA work
austinpagan Apr 24, 2020
37a1a61
Initial CUDA work
austinpagan Apr 27, 2020
fcf031c
Initial CUDA work
austinpagan Apr 27, 2020
0fb433f
Initial CUDA work
austinpagan Apr 27, 2020
44819a4
Initial CUDA work
ChipKerchner Apr 28, 2020
a668c8e
Initial CUDA work
ChipKerchner Apr 28, 2020
0e8cd92
Initial CUDA work
Apr 28, 2020
0cbe79d
Initial CUDA work
austinpagan May 2, 2020
252f465
Initial CUDA work
ChipKerchner May 4, 2020
f7d8fb4
Initial CUDA work
austinpagan May 4, 2020
be09b8f
Initial CUDA work
austinpagan May 5, 2020
3d6addd
Initial CUDA work
austinpagan May 5, 2020
0025bed
Initial CUDA work
austinpagan May 8, 2020
b70604d
Initial CUDA work
austinpagan May 8, 2020
d92739d
Initial CUDA work
austinpagan May 11, 2020
429e752
Initial CUDA work
austinpagan May 12, 2020
c7c22a5
Initial CUDA work
ChipKerchner May 15, 2020
aad98f0
Initial CUDA work
austinpagan May 24, 2020
1aabb5c
Initial CUDA work
austinpagan May 24, 2020
f75696e
Initial CUDA work
austinpagan May 28, 2020
0f6df0b
Initial CUDA work
austinpagan Jun 3, 2020
8fa8318
Initial CUDA work
austinpagan Jun 3, 2020
f70beb7
Initial CUDA work
austinpagan Jun 3, 2020
af49c32
Initial CUDA work
ChipKerchner Jun 4, 2020
038128d
Initial CUDA work
austinpagan Jun 4, 2020
3fd7618
Initial CUDA work
austinpagan Jun 4, 2020
7e692c2
Initial CUDA work
austinpagan Jun 4, 2020
b27b7e1
Initial CUDA work
austinpagan Jun 4, 2020
80a8f43
Initial CUDA work
austinpagan Jun 8, 2020
baf6f79
Initial CUDA work
austinpagan Jun 8, 2020
944a3e5
Initial CUDA work
ChipKerchner Jun 8, 2020
f34ec35
Initial CUDA work
austinpagan Jun 8, 2020
44ce402
Initial CUDA work
austinpagan Jun 8, 2020
d7e34de
Initial CUDA work
ChipKerchner Jun 9, 2020
8af3738
Initial CUDA work
ChipKerchner Jun 9, 2020
903e52b
Initial CUDA work
ChipKerchner Jun 9, 2020
1efcad0
redirect log to python console (#3090)
guolinke May 20, 2020
13c6450
re-order includes (fixes #3132) (#3133)
jameslamb Jun 1, 2020
7a6bbb5
Revert "re-order includes (fixes #3132) (#3133)" (#3153)
StrikerRUS Jun 5, 2020
55f24cc
Missing change from previous rebase
ChipKerchner Jun 11, 2020
8e028f3
Minor cleanup and removal of development scripts.
ChipKerchner Jun 11, 2020
f4725e1
Only set gpu_use_dp on by default for CUDA. Other minor change.
ChipKerchner Jun 15, 2020
0e84c15
Fix python lint indentation problem.
ChipKerchner Jun 15, 2020
ccf7602
More python lint issues.
ChipKerchner Jun 15, 2020
c417715
Big lint cleanup - more to come.
ChipKerchner Jun 15, 2020
bdcbeaa
Another large lint cleanup - more to come.
ChipKerchner Jun 15, 2020
930436c
Even more lint cleanup.
ChipKerchner Jun 16, 2020
312733d
Minor cleanup so less differences in code.
ChipKerchner Jun 17, 2020
943603a
Revert is_use_subset changes
ChipKerchner Jun 23, 2020
1842c82
Another rebase from master to fix recent conflicts.
ChipKerchner Jun 24, 2020
7a79697
More lint.
ChipKerchner Jun 24, 2020
f37ab3b
Simple code cleanup - add & remove blank lines, revert unneccessary f…
ChipKerchner Jul 2, 2020
9ff6a2b
Removed parameters added for CUDA and various bug fix.
ChipKerchner Jul 6, 2020
e0ad9d5
Yet more lint and unneccessary changes.
ChipKerchner Jul 6, 2020
90709e6
Revert another change.
ChipKerchner Jul 6, 2020
99e459b
Removal of unneccessary code.
ChipKerchner Jul 6, 2020
f40d77b
temporary appveyor.yml for building and testing
ChipKerchner Jul 7, 2020
d900b64
Remove return value in ReSize
ChipKerchner Jul 7, 2020
361720b
Removal of unused variables.
ChipKerchner Jul 7, 2020
a8b4245
Code cleanup from reviewers suggestions.
ChipKerchner Jul 13, 2020
ac5f7b8
Removal of FIXME comments and unused defines.
ChipKerchner Jul 13, 2020
63d75e9
More reviewers comments cleanup.
ChipKerchner Jul 13, 2020
6fee44a
More reviewers comments cleanup.
ChipKerchner Jul 13, 2020
cc41446
More reviewers comments cleanup.
ChipKerchner Jul 14, 2020
bab89cf
Fix config variables.
ChipKerchner Jul 14, 2020
ea96902
Attempt to fix check-docs failure
ChipKerchner Jul 17, 2020
12a9fe5
Update Paramster.rst for num_gpu
ChipKerchner Jul 17, 2020
d712538
Removing test appveyor.yml
ChipKerchner Jul 20, 2020
26c4dce
Add ƒCUDA_RESOLVE_DEVICE_SYMBOLS to libraries to fix linking issue.
ChipKerchner Jul 20, 2020
70b4bbb
Fixed handling of data elements less than 2K.
ChipKerchner Jul 21, 2020
e7f45f5
More reviewers comments cleanup.
ChipKerchner Jul 21, 2020
282731c
Removal of TODO and fix printing of int64_t
ChipKerchner Jul 22, 2020
6103a87
Add cuda change for CI testing and remove cuda from device_type in py…
ChipKerchner Jul 22, 2020
40e37e8
Missed one change form previous check-in
ChipKerchner Jul 22, 2020
8878ea4
Removal AdditionConfig and fix settings.
ChipKerchner Jul 27, 2020
9ab44b6
Limit number of GPUs to one for now in CUDA.
ChipKerchner Jul 27, 2020
9f8a011
Update Parameters.rst for previous check-in
ChipKerchner Jul 27, 2020
766a514
Merge branch 'master' into cuda
ChipKerchner Aug 3, 2020
5369a8a
Whitespace removal.
ChipKerchner Aug 3, 2020
51e096c
Cleanup unused code.
ChipKerchner Aug 3, 2020
9ca091b
Changed uint/ushort/ulong to unsigned int/short/long to help Windows …
ChipKerchner Aug 5, 2020
7fcecff
Lint change from previous check-in.
ChipKerchner Aug 5, 2020
05274d4
Changes based on reviewers comments.
ChipKerchner Aug 14, 2020
8bb20d3
More reviewer comment changes.
ChipKerchner Aug 17, 2020
f0ebfa6
Merge branch 'master' into cuda
ChipKerchner Aug 21, 2020
cc6d348
Adding warning for is_sparse. Revert tmp_subset code. Only return Fea…
ChipKerchner Aug 21, 2020
5f3f1e0
Fix so that CUDA code will compile even if you enable the SCORE_T_USE…
ChipKerchner Aug 24, 2020
676807a
Reviewer comment cleanup.
ChipKerchner Aug 24, 2020
a751bea
Replace warning with Log message. Removal of some of the USE_CUDA. Fi…
ChipKerchner Aug 27, 2020
15eec67
Remove PRINT debug for CUDA code.
ChipKerchner Aug 27, 2020
1884dc2
Allow to use of multiple GPUs for CUDA.
ChipKerchner Aug 31, 2020
32f3a8d
More multi-GPUs enablement for CUDA.
ChipKerchner Sep 2, 2020
cc09d48
Merge branch 'master' into cuda
ChipKerchner Sep 8, 2020
2095e9a
Merge branch 'master' into cuda
ChipKerchner Sep 8, 2020
6b3cc5c
Merge branch 'master' into cuda
ChipKerchner Sep 8, 2020
ea537f8
More code cleanup based on reviews comments.
ChipKerchner Sep 14, 2020
d9e9d2e
Update docs with latest config changes.
ChipKerchner Sep 14, 2020
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions .ci/test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,16 @@ if [[ $TASK == "gpu" ]]; then
exit 0
fi
cmake -DUSE_GPU=ON -DOpenCL_INCLUDE_DIR=$AMDAPPSDK_PATH/include/ ..
elif [[ $TASK == "cuda" ]]; then
sed -i'.bak' 's/std::string device_type = "cpu";/std::string device_type = "cuda";/' $BUILD_DIRECTORY/include/LightGBM/config.h
grep -q 'std::string device_type = "cuda"' $BUILD_DIRECTORY/include/LightGBM/config.h || exit -1 # make sure that changes were really done
if [[ $METHOD == "pip" ]]; then
cd $BUILD_DIRECTORY/python-package && python setup.py sdist || exit -1
pip install --user $BUILD_DIRECTORY/python-package/dist/lightgbm-$LGB_VER.tar.gz -v --install-option=--cuda || exit -1
pytest $BUILD_DIRECTORY/tests/python_package_test || exit -1
exit 0
fi
cmake -DUSE_CUDA=ON ..
elif [[ $TASK == "mpi" ]]; then
if [[ $METHOD == "pip" ]]; then
cd $BUILD_DIRECTORY/python-package && python setup.py sdist || exit -1
Expand Down
90 changes: 89 additions & 1 deletion CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,17 +1,24 @@
if(USE_GPU OR APPLE)
cmake_minimum_required(VERSION 3.2)
elseif(USE_CUDA)
cmake_minimum_required(VERSION 3.16)
else()
cmake_minimum_required(VERSION 2.8)
endif()

PROJECT(lightgbm)
if(USE_CUDA)
PROJECT(lightgbm LANGUAGES C CXX CUDA)
else()
PROJECT(lightgbm LANGUAGES C CXX)
endif()

OPTION(USE_MPI "Enable MPI-based parallel learning" OFF)
OPTION(USE_OPENMP "Enable OpenMP" ON)
OPTION(USE_GPU "Enable GPU-accelerated training" OFF)
OPTION(USE_SWIG "Enable SWIG to generate Java API" OFF)
OPTION(USE_HDFS "Enable HDFS support (EXPERIMENTAL)" OFF)
OPTION(USE_TIMETAG "Set to ON to output time costs" OFF)
OPTION(USE_CUDA "Enable CUDA-accelerated training (EXPERIMENTAL)" OFF)
OPTION(USE_DEBUG "Set to ON for Debug mode" OFF)
OPTION(BUILD_STATIC_LIB "Build static library" OFF)
OPTION(BUILD_FOR_R "Set to ON if building lib_lightgbm for use with the R package" OFF)
Expand Down Expand Up @@ -94,6 +101,10 @@ else()
ADD_DEFINITIONS(-DUSE_SOCKET)
endif(USE_MPI)

if(USE_CUDA)
SET(USE_OPENMP ON CACHE BOOL "CUDA requires OpenMP" FORCE)
endif(USE_CUDA)

if(USE_OPENMP)
find_package(OpenMP REQUIRED)
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
Expand Down Expand Up @@ -123,6 +134,67 @@ if(USE_GPU)
ADD_DEFINITIONS(-DUSE_GPU)
endif(USE_GPU)

if(USE_CUDA)
find_package(CUDA REQUIRED)
ChipKerchner marked this conversation as resolved.
Show resolved Hide resolved
include_directories(${CUDA_INCLUDE_DIRS})
LIST(APPEND CMAKE_CUDA_FLAGS -Xcompiler=${OpenMP_CXX_FLAGS} -Xcompiler=-fPIC -Xcompiler=-Wall)
CUDA_SELECT_NVCC_ARCH_FLAGS(CUDA_ARCH_FLAGS 6.0 6.1 6.2 7.0 7.5+PTX)

LIST(APPEND CMAKE_CUDA_FLAGS ${CUDA_ARCH_FLAGS})
if(USE_DEBUG)
SET(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -g")
else()
SET(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -O3 -lineinfo")
endif()
string(REPLACE ";" " " CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS}")
message(STATUS "CMAKE_CUDA_FLAGS: ${CMAKE_CUDA_FLAGS}")

ADD_DEFINITIONS(-DUSE_CUDA)
if (NOT DEFINED CMAKE_CUDA_STANDARD)
set(CMAKE_CUDA_STANDARD 11)
set(CMAKE_CUDA_STANDARD_REQUIRED ON)
endif()

set(BASE_DEFINES
-DPOWER_FEATURE_WORKGROUPS=12
-DUSE_CONSTANT_BUF=0
)
ChipKerchner marked this conversation as resolved.
Show resolved Hide resolved
set(ALLFEATS_DEFINES
${BASE_DEFINES}
-DENABLE_ALL_FEATURES
)
set(FULLDATA_DEFINES
${ALLFEATS_DEFINES}
-DIGNORE_INDICES
)

message(STATUS "ALLFEATS_DEFINES: ${ALLFEATS_DEFINES}")
message(STATUS "FULLDATA_DEFINES: ${FULLDATA_DEFINES}")

function(add_histogram hsize hname hadd hconst hdir)
add_library(histo${hsize}${hname} OBJECT src/treelearner/kernels/histogram${hsize}.cu)
set_target_properties(histo${hsize}${hname} PROPERTIES CUDA_SEPARABLE_COMPILATION ON)
if(hadd)
list(APPEND histograms histo${hsize}${hname})
set(histograms ${histograms} PARENT_SCOPE)
endif()
target_compile_definitions(
histo${hsize}${hname} PRIVATE
-DCONST_HESSIAN=${hconst}
${hdir}
)
endfunction()

foreach (hsize _16_64_256)
add_histogram("${hsize}" "_sp_const" "True" "1" "${BASE_DEFINES}")
add_histogram("${hsize}" "_sp" "True" "0" "${BASE_DEFINES}")
add_histogram("${hsize}" "-allfeats_sp_const" "False" "1" "${ALLFEATS_DEFINES}")
add_histogram("${hsize}" "-allfeats_sp" "False" "0" "${ALLFEATS_DEFINES}")
add_histogram("${hsize}" "-fulldata_sp_const" "True" "1" "${FULLDATA_DEFINES}")
add_histogram("${hsize}" "-fulldata_sp" "True" "0" "${FULLDATA_DEFINES}")
endforeach()
endif(USE_CUDA)

if(USE_HDFS)
find_package(JNI REQUIRED)
find_path(HDFS_INCLUDE_DIR hdfs.h REQUIRED)
Expand Down Expand Up @@ -228,6 +300,9 @@ file(GLOB SOURCES
src/objective/*.cpp
src/network/*.cpp
src/treelearner/*.cpp
if(USE_CUDA)
src/treelearner/*.cu
endif(USE_CUDA)
)

add_executable(lightgbm src/main.cpp ${SOURCES})
Expand Down Expand Up @@ -303,6 +378,19 @@ if(USE_GPU)
TARGET_LINK_LIBRARIES(_lightgbm ${OpenCL_LIBRARY} ${Boost_LIBRARIES})
endif(USE_GPU)

if(USE_CUDA)
set_target_properties(lightgbm PROPERTIES CUDA_RESOLVE_DEVICE_SYMBOLS ON)
TARGET_LINK_LIBRARIES(
lightgbm
${histograms}
)
set_target_properties(_lightgbm PROPERTIES CUDA_RESOLVE_DEVICE_SYMBOLS ON)
TARGET_LINK_LIBRARIES(
_lightgbm
${histograms}
)
endif(USE_CUDA)

if(USE_HDFS)
TARGET_LINK_LIBRARIES(lightgbm ${HDFS_CXX_LIBRARIES})
TARGET_LINK_LIBRARIES(_lightgbm ${HDFS_CXX_LIBRARIES})
Expand Down
8 changes: 7 additions & 1 deletion docs/Parameters.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1120,7 +1120,13 @@ GPU Parameters

- ``gpu_use_dp`` :raw-html:`<a id="gpu_use_dp" title="Permalink to this parameter" href="#gpu_use_dp">&#x1F517;&#xFE0E;</a>`, default = ``false``, type = bool

- set this to ``true`` to use double precision math on GPU (by default single precision is used)
- set this to ``true`` to use double precision math on GPU (by default single precision is used in OpenCL implementation and double precision is used in CUDA implementation)

- ``num_gpu`` :raw-html:`<a id="num_gpu" title="Permalink to this parameter" href="#num_gpu">&#x1F517;&#xFE0E;</a>`, default = ``1``, type = int, constraints: ``num_gpu > 0``

- number of GPUs

- **Note**: can be used only in CUDA implementation

.. end params list

Expand Down
3 changes: 3 additions & 0 deletions include/LightGBM/bin.h
Original file line number Diff line number Diff line change
Expand Up @@ -288,6 +288,9 @@ class Bin {
/*! \brief Number of all data */
virtual data_size_t num_data() const = 0;

/*! \brief Get data pointer */
virtual void* get_data() = 0;

virtual void ReSize(data_size_t num_data) = 0;

/*!
Expand Down
7 changes: 6 additions & 1 deletion include/LightGBM/config.h
Original file line number Diff line number Diff line change
Expand Up @@ -965,9 +965,14 @@ struct Config {
// desc = **Note**: refer to `GPU Targets <./GPU-Targets.rst#query-opencl-devices-in-your-system>`__ for more details
int gpu_device_id = -1;

// desc = set this to ``true`` to use double precision math on GPU (by default single precision is used)
// desc = set this to ``true`` to use double precision math on GPU (by default single precision is used in OpenCL implementation and double precision is used in CUDA implementation)
bool gpu_use_dp = false;

// check = >0
// desc = number of GPUs
// desc = **Note**: can be used only in CUDA implementation
int num_gpu = 1;

#pragma endregion

#pragma endregion
Expand Down
24 changes: 24 additions & 0 deletions include/LightGBM/cuda/cuda_utils.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
/*!
* Copyright (c) 2020 IBM Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE file in the project root for license information.
*/
jameslamb marked this conversation as resolved.
Show resolved Hide resolved
#ifndef LIGHTGBM_CUDA_CUDA_UTILS_H_
#define LIGHTGBM_CUDA_CUDA_UTILS_H_

#ifdef USE_CUDA

#include <cuda.h>
#include <cuda_runtime.h>
#include <stdio.h>

#define CUDASUCCESS_OR_FATAL(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true) {
if (code != cudaSuccess) {
LightGBM::Log::Fatal("[CUDA] %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}

#endif // USE_CUDA

#endif // LIGHTGBM_CUDA_CUDA_UTILS_H_
86 changes: 86 additions & 0 deletions include/LightGBM/cuda/vector_cudahost.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
/*!
* Copyright (c) 2020 IBM Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE file in the project root for license information.
*/
#ifndef LIGHTGBM_CUDA_VECTOR_CUDAHOST_H_
#define LIGHTGBM_CUDA_VECTOR_CUDAHOST_H_

#include <LightGBM/utils/common.h>

#ifdef USE_CUDA
#include <cuda.h>
#include <cuda_runtime.h>
#endif
#include <stdio.h>

enum LGBM_Device {
lgbm_device_cpu,
lgbm_device_gpu,
lgbm_device_cuda
};

enum Use_Learner {
use_cpu_learner,
use_gpu_learner,
use_cuda_learner
};

namespace LightGBM {

class LGBM_config_ {
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It looks like duplication.
I'm maybe missing something but why can't we compare directly config_->device_type == std::string("cuda")? Could you please elaborate why this proxy construction is needed?

Copy link
Contributor Author

@ChipKerchner ChipKerchner Aug 24, 2020

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't think it is available in all the places CUDA needs it. If you want to investigate this once it is integrated, please do.

public:
static int current_device; // Default: lgbm_device_cpu
static int current_learner; // Default: use_cpu_learner
};


template <class T>
struct CHAllocator {
typedef T value_type;
CHAllocator() {}
template <class U> CHAllocator(const CHAllocator<U>& other);
T* allocate(std::size_t n) {
T* ptr;
if (n == 0) return NULL;
#ifdef USE_CUDA
if (LGBM_config_::current_device == lgbm_device_cuda) {
cudaError_t ret = cudaHostAlloc(&ptr, n*sizeof(T), cudaHostAllocPortable);
if (ret != cudaSuccess) {
Log::Warning("Defaulting to malloc in CHAllocator!!!");
ptr = reinterpret_cast<T*>(_mm_malloc(n*sizeof(T), 16));
}
} else {
ptr = reinterpret_cast<T*>(_mm_malloc(n*sizeof(T), 16));
}
#else
ptr = reinterpret_cast<T*>(_mm_malloc(n*sizeof(T), 16));
#endif
return ptr;
}

void deallocate(T* p, std::size_t n) {
(void)n; // UNUSED
if (p == NULL) return;
#ifdef USE_CUDA
if (LGBM_config_::current_device == lgbm_device_cuda) {
cudaPointerAttributes attributes;
cudaPointerGetAttributes(&attributes, p);
if ((attributes.type == cudaMemoryTypeHost) && (attributes.devicePointer != NULL)) {
cudaFreeHost(p);
}
} else {
_mm_free(p);
}
#else
_mm_free(p);
#endif
}
};
template <class T, class U>
bool operator==(const CHAllocator<T>&, const CHAllocator<U>&);
template <class T, class U>
bool operator!=(const CHAllocator<T>&, const CHAllocator<U>&);

} // namespace LightGBM

#endif // LIGHTGBM_CUDA_VECTOR_CUDAHOST_H_
8 changes: 8 additions & 0 deletions include/LightGBM/dataset.h
Original file line number Diff line number Diff line change
Expand Up @@ -589,6 +589,14 @@ class Dataset {
return feature_groups_[i]->is_multi_val_;
}

inline size_t FeatureGroupSizesInByte(int group) const {
return feature_groups_[group]->FeatureGroupSizesInByte();
}

inline void* FeatureGroupData(int group) const {
return feature_groups_[group]->FeatureGroupData();
}

inline double RealThreshold(int i, uint32_t threshold) const {
const int group = feature2group_[i];
const int sub_feature = feature2subfeature_[i];
Expand Down
11 changes: 11 additions & 0 deletions include/LightGBM/feature_group.h
Original file line number Diff line number Diff line change
Expand Up @@ -228,6 +228,17 @@ class FeatureGroup {
return bin_data_->GetIterator(min_bin, max_bin, most_freq_bin);
}

inline size_t FeatureGroupSizesInByte() {
return bin_data_->SizesInByte();
}

inline void* FeatureGroupData() {
if (is_multi_val_) {
return nullptr;
}
return bin_data_->get_data();
}
ChipKerchner marked this conversation as resolved.
Show resolved Hide resolved

inline data_size_t Split(int sub_feature, const uint32_t* threshold,
int num_threshold, bool default_left,
const data_size_t* data_indices, data_size_t cnt,
Expand Down
8 changes: 6 additions & 2 deletions python-package/setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ def silent_call(cmd, raise_error=False, error_msg=''):
return 1


def compile_cpp(use_mingw=False, use_gpu=False, use_mpi=False,
def compile_cpp(use_mingw=False, use_gpu=False, use_cuda=False, use_mpi=False,
use_hdfs=False, boost_root=None, boost_dir=None,
boost_include_dir=None, boost_librarydir=None,
opencl_include_dir=None, opencl_library=None,
Expand Down Expand Up @@ -115,6 +115,8 @@ def compile_cpp(use_mingw=False, use_gpu=False, use_mpi=False,
cmake_cmd.append("-DOpenCL_INCLUDE_DIR={0}".format(opencl_include_dir))
if opencl_library:
cmake_cmd.append("-DOpenCL_LIBRARY={0}".format(opencl_library))
elif use_cuda:
cmake_cmd.append("-DUSE_CUDA=ON")
if use_mpi:
cmake_cmd.append("-DUSE_MPI=ON")
if nomp:
Expand Down Expand Up @@ -188,6 +190,7 @@ class CustomInstall(install):
user_options = install.user_options + [
('mingw', 'm', 'Compile with MinGW'),
('gpu', 'g', 'Compile GPU version'),
('cuda', None, 'Compile CUDA version'),
('mpi', None, 'Compile MPI version'),
('nomp', None, 'Compile version without OpenMP support'),
('hdfs', 'h', 'Compile HDFS version'),
Expand All @@ -205,6 +208,7 @@ def initialize_options(self):
install.initialize_options(self)
self.mingw = 0
self.gpu = 0
self.cuda = 0
self.boost_root = None
self.boost_dir = None
self.boost_include_dir = None
Expand All @@ -228,7 +232,7 @@ def run(self):
open(LOG_PATH, 'wb').close()
if not self.precompile:
copy_files(use_gpu=self.gpu)
compile_cpp(use_mingw=self.mingw, use_gpu=self.gpu, use_mpi=self.mpi,
compile_cpp(use_mingw=self.mingw, use_gpu=self.gpu, use_cuda=self.cuda, use_mpi=self.mpi,
use_hdfs=self.hdfs, boost_root=self.boost_root, boost_dir=self.boost_dir,
boost_include_dir=self.boost_include_dir, boost_librarydir=self.boost_librarydir,
opencl_include_dir=self.opencl_include_dir, opencl_library=self.opencl_library,
Expand Down
5 changes: 5 additions & 0 deletions src/application/application.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
#include <LightGBM/network.h>
#include <LightGBM/objective_function.h>
#include <LightGBM/prediction_early_stop.h>
#include <LightGBM/cuda/vector_cudahost.h>
#include <LightGBM/utils/common.h>
#include <LightGBM/utils/openmp_wrapper.h>
#include <LightGBM/utils/text_reader.h>
Expand Down Expand Up @@ -38,6 +39,10 @@ Application::Application(int argc, char** argv) {
if (config_.data.size() == 0 && config_.task != TaskType::kConvertModel) {
Log::Fatal("No training/prediction data, application quit");
}

if (config_.device_type == std::string("cuda")) {
LGBM_config_::current_device = lgbm_device_cuda;
}
}

Application::~Application() {
Expand Down
Loading