Skip to content

Commit

Permalink
Pydantic v2 migration (#5167)
Browse files Browse the repository at this point in the history
Pydantic v2 has been out for some time now. We have been relying on
using the v1 API available in v2 until now. This is a refresh of #3902
to bring proper v2 support to DeepSpeed.

Corresponding DeepSpeed-MII PR
[here](microsoft/DeepSpeed-MII#423).

@loadams

---------

Co-authored-by: Logan Adams <[email protected]>
Co-authored-by: Logan Adams <[email protected]>
Co-authored-by: Olatunji Ruwase <[email protected]>
Co-authored-by: Abhishek Kulkarni <[email protected]>
Co-authored-by: Abhishek Kulkarni <[email protected]>
Co-authored-by: Lev Kurilenko <[email protected]>
  • Loading branch information
7 people authored Aug 22, 2024
1 parent 8c2be7e commit 0a4457c
Show file tree
Hide file tree
Showing 17 changed files with 201 additions and 191 deletions.
3 changes: 2 additions & 1 deletion .github/workflows/nv-a6000.yml
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,8 @@ jobs:
- name: Install deepspeed
run: |
python -m pip install docutils==0.18.1 jinja2==3.0 urllib3==1.26.11 ninja
python -m pip install pydantic==1.10.11
# Update packages included in the container that do not support pydantic 2+ to versions that do
python -m pip install thinc spacy confection --upgrade
python -m pip install .[dev,1bit,autotuning,inf]
ds_report
- name: Python environment
Expand Down
14 changes: 3 additions & 11 deletions deepspeed/comm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,20 +3,12 @@

# DeepSpeed Team

from .constants import *
from ..pydantic_v1 import BaseModel

from deepspeed.runtime.config_utils import DeepSpeedConfigModel

class CommsConfig(BaseModel):

class Config:
validate_all = True
validate_assignment = True
use_enum_values = True
extra = 'forbid'
from .constants import *


class CommsLoggerConfig(CommsConfig):
class CommsLoggerConfig(DeepSpeedConfigModel):
enabled: bool = COMMS_LOGGER_ENABLED_DEFAULT
prof_all: bool = COMMS_LOGGER_PROF_ALL_DEFAULT
prof_ops: list = COMMS_LOGGER_PROF_OPS_DEFAULT
Expand Down
119 changes: 63 additions & 56 deletions deepspeed/inference/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,38 +5,25 @@

import torch
import deepspeed
from deepspeed.pydantic_v1 import Field, validator
from pydantic import Field, field_validator
from deepspeed.runtime.config_utils import DeepSpeedConfigModel
from deepspeed.runtime.zero.config import DeepSpeedZeroConfig
from typing import Dict, Union
from typing import Dict, Union, Optional
from enum import Enum


class DtypeEnum(Enum):
# The torch dtype must always be the first value (so we return torch.dtype)
fp16 = torch.float16, "torch.float16", "fp16", "float16", "half"
fp32 = torch.float32, "torch.float32", "fp32", "float32", "float"
bf16 = torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16", "bfloat"
int8 = torch.int8, "torch.int8", "int8"

# Copied from https://stackoverflow.com/a/43210118
# Allows us to use multiple values for each Enum index and returns first
# listed value when Enum is called
def __new__(cls, *values):
obj = object.__new__(cls)
# first value is canonical value
obj._value_ = values[0]
for other_value in values[1:]:
cls._value2member_map_[other_value] = obj
obj._all_values = values
return obj

def __repr__(self):
return "<%s.%s: %s>" % (
self.__class__.__name__,
self._name_,
", ".join([repr(v) for v in self._all_values]),
)
fp16 = (torch.float16, "torch.float16", "fp16", "float16", "half")
fp32 = (torch.float32, "torch.float32", "fp32", "float32", "float")
bf16 = (torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16", "bfloat")
int8 = (torch.int8, "torch.int8", "int8")

@classmethod
def from_str(cls, value: str):
for dtype in cls:
if value in dtype.value:
return dtype
raise ValueError(f"'{value}' is not a valid DtypeEnum")


class MoETypeEnum(str, Enum):
Expand Down Expand Up @@ -91,24 +78,24 @@ class QuantTypeEnum(str, Enum):


class BaseQuantConfig(DeepSpeedConfigModel):
enabled = True
num_bits = 8
enabled: bool = True
num_bits: int = 8
q_type: QuantTypeEnum = QuantTypeEnum.sym
q_groups: int = 1


class WeightQuantConfig(BaseQuantConfig):
enabled = True
enabled: bool = True
quantized_initialization: Dict = {}
post_init_quant: Dict = {}


class ActivationQuantConfig(BaseQuantConfig):
enabled = True
enabled: bool = True


class QKVQuantConfig(DeepSpeedConfigModel):
enabled = True
enabled: bool = True


class QuantizationConfig(DeepSpeedConfigModel):
Expand All @@ -120,9 +107,9 @@ class QuantizationConfig(DeepSpeedConfigModel):

# todo: brainstorm on how to do ckpt loading for DS inference
class InferenceCheckpointConfig(DeepSpeedConfigModel):
checkpoint_dir: str = None
save_mp_checkpoint_path: str = None
base_dir: str = None
checkpoint_dir: Optional[str] = None
save_mp_checkpoint_path: Optional[str] = None
base_dir: Optional[str] = None


class DeepSpeedInferenceConfig(DeepSpeedConfigModel):
Expand All @@ -136,7 +123,7 @@ class DeepSpeedInferenceConfig(DeepSpeedConfigModel):
`(attention_output projection, transformer output projection)`
"""

dtype: DtypeEnum = torch.float16
dtype: torch.dtype = torch.float16
"""
Desired model data type, will convert model to this type.
Supported target types: `torch.half`, `torch.int8`, `torch.float`
Expand Down Expand Up @@ -198,7 +185,7 @@ class DeepSpeedInferenceConfig(DeepSpeedConfigModel):
"""

#todo: refactor the following 3 into the new checkpoint_config
checkpoint: Union[str, Dict] = None
checkpoint: Optional[Union[str, Dict]] = None
"""
Path to deepspeed compatible checkpoint or path to JSON with load policy.
"""
Expand All @@ -214,7 +201,7 @@ class DeepSpeedInferenceConfig(DeepSpeedConfigModel):
specifying whether the inference-module is created with empty or real Tensor
"""

save_mp_checkpoint_path: str = None
save_mp_checkpoint_path: Optional[str] = None
"""
The path for which we want to save the loaded model with a checkpoint. This
feature is used for adjusting the parallelism degree to help alleviate the
Expand Down Expand Up @@ -243,19 +230,21 @@ class DeepSpeedInferenceConfig(DeepSpeedConfigModel):

replace_method: str = Field(
"auto",
deprecated=True,
deprecated_msg="This parameter is no longer needed, please remove from your call to DeepSpeed-inference")
json_schema_extra={
"deprecated": True,
"deprecated_msg": "This parameter is no longer needed, please remove from your call to DeepSpeed-inference"
})

injection_policy: Dict = Field(None, alias="injection_dict")
injection_policy: Optional[Dict] = Field(None, alias="injection_dict")
"""
Dictionary mapping a client nn.Module to its corresponding injection
policy. e.g., `{BertLayer : deepspeed.inference.HFBertLayerPolicy}`
"""

injection_policy_tuple: tuple = None
injection_policy_tuple: Optional[tuple] = None
""" TODO: Add docs """

config: Dict = Field(None, alias="args") # todo: really no need for this field if we can refactor
config: Optional[Dict] = Field(None, alias="args") # todo: really no need for this field if we can refactor

max_out_tokens: int = Field(1024, alias="max_tokens")
"""
Expand All @@ -274,31 +263,49 @@ class DeepSpeedInferenceConfig(DeepSpeedConfigModel):

transposed_mode: bool = Field(False, alias="transposed_mode")

mp_size: int = Field(1, deprecated=True, new_param="tensor_parallel.tp_size")
mp_size: int = Field(1, json_schema_extra={"deprecated": True, "new_param": "tensor_parallel.tp_size"})
"""
Desired model parallel size, default is 1 meaning no model parallelism.
Deprecated, please use the ``tensor_parallel` config to control model
parallelism.
"""
mpu: object = Field(None, deprecated=True, new_param="tensor_parallel.mpu")
ep_size: int = Field(1, deprecated=True, new_param="moe.ep_size")
ep_group: object = Field(None, alias="expert_group", deprecated=True, new_param="moe.ep_group")
ep_mp_group: object = Field(None, alias="expert_mp_group", deprecated=True, new_param="moe.ep_mp_group")
moe_experts: list = Field([1], deprecated=True, new_param="moe.moe_experts")
moe_type: MoETypeEnum = Field(MoETypeEnum.standard, deprecated=True, new_param="moe.type")

@validator("moe")
mpu: object = Field(None, json_schema_extra={"deprecated": True, "new_param": "tensor_parallel.mpu"})
ep_size: int = Field(1, json_schema_extra={"deprecated": True, "new_param": "moe.ep_size"})
ep_group: object = Field(None,
alias="expert_group",
json_schema_extra={
"deprecated": True,
"new_param": "moe.ep_group"
})
ep_mp_group: object = Field(None,
alias="expert_mp_group",
json_schema_extra={
"deprecated": True,
"new_param": "moe.ep_mp_group"
})
moe_experts: list = Field([1], json_schema_extra={"deprecated": True, "new_param": "moe.moe_experts"})
moe_type: MoETypeEnum = Field(MoETypeEnum.standard,
json_schema_extra={
"deprecated": True,
"new_param": "moe.type"
})

@field_validator("dtype", mode="before")
def validate_dtype(cls, field_value, values):
if isinstance(field_value, str):
return DtypeEnum.from_str(field_value).value[0]
if isinstance(field_value, torch.dtype):
return field_value
raise TypeError(f"Invalid type for dtype: {type(field_value)}")

@field_validator("moe")
def moe_backward_compat(cls, field_value, values):
if isinstance(field_value, bool):
return DeepSpeedMoEConfig(moe=field_value)
return field_value

@validator("use_triton")
@field_validator("use_triton")
def has_triton(cls, field_value, values):
if field_value and not deepspeed.HAS_TRITON:
raise ValueError('Triton needs to be installed to use deepspeed with triton kernels')
return field_value

class Config:
# Get the str representation of the datatype for serialization
json_encoders = {torch.dtype: lambda x: str(x)}
3 changes: 2 additions & 1 deletion deepspeed/inference/v2/config_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,9 @@

# DeepSpeed Team

from pydantic import Field
from typing import Optional
from deepspeed.pydantic_v1 import Field

from deepspeed.runtime.config_utils import DeepSpeedConfigModel
from .ragged import DSStateManagerConfig

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,17 +27,17 @@ class TensorMetadata(DeepSpeedConfigModel):
"""
A class to represent a tensor specification.
"""
dtype: Optional[str]
shape: Optional[Tuple[int, ...]]
strides: Optional[Tuple[int, ...]]
dtype: Optional[str] = None
shape: Optional[Tuple[int, ...]] = None
strides: Optional[Tuple[int, ...]] = None
offset: int


class ParameterMetadata(DeepSpeedConfigModel):
"""
A class to represent a parameter specification.
"""
core_param: TensorMetadata = None
core_param: Optional[TensorMetadata] = None
aux_params: Dict[str, TensorMetadata] = {}


Expand Down
14 changes: 6 additions & 8 deletions deepspeed/inference/v2/ragged/manager_configs.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from enum import Enum
from typing import Tuple

from deepspeed.pydantic_v1 import PositiveInt, validator
from pydantic import PositiveInt, model_validator

from deepspeed.runtime.config_utils import DeepSpeedConfigModel
from ..inference_utils import DtypeEnum
Expand Down Expand Up @@ -173,11 +173,9 @@ class DSStateManagerConfig(DeepSpeedConfigModel):
Enable tracking for offloading KV-cache to host memory. Currently unsupported.
"""

@validator("max_ragged_sequence_count")
def max_ragged_sequence_count_validator(cls, v: int, values: dict):
@model_validator(mode="after")
def max_ragged_sequence_count_validator(self):
# If the attributes below failed their validation they won't appear in the values dict.
if "max_tracked_sequences" in values and v > values["max_tracked_sequences"]:
raise ValueError("max_ragged_sequence_count must be less than max_tracked_sequences")
if "max_ragged_batch_size" in values and v > values["max_ragged_batch_size"]:
raise ValueError("max_ragged_sequence_count must be less than max_ragged_batch_size")
return v
assert self.max_ragged_sequence_count <= self.max_tracked_sequences, "max_ragged_sequence_count must be less than max_tracked_sequences"
assert self.max_ragged_sequence_count <= self.max_ragged_batch_size, "max_ragged_sequence_count must be less than max_ragged_batch_size"
return self
16 changes: 8 additions & 8 deletions deepspeed/monitor/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

from typing import Optional

from deepspeed.pydantic_v1 import root_validator
from pydantic import model_validator
from deepspeed.runtime.config_utils import DeepSpeedConfigModel


Expand Down Expand Up @@ -36,10 +36,10 @@ class WandbConfig(DeepSpeedConfigModel):
enabled: bool = False
""" Whether logging to WandB is enabled. Requires `wandb` package is installed. """

group: str = None
group: Optional[str] = None
""" Name for the WandB group. This can be used to group together runs. """

team: str = None
team: Optional[str] = None
""" Name for the WandB team. """

project: str = "deepspeed"
Expand Down Expand Up @@ -137,8 +137,8 @@ class DeepSpeedMonitorConfig(DeepSpeedConfigModel):
csv_monitor: CSVConfig = {}
""" Local CSV output of monitoring data. """

@root_validator
def check_enabled(cls, values):
values["enabled"] = values.get("tensorboard").enabled or values.get("wandb").enabled or values.get(
"csv_monitor").enabled or values.get("comet").enabled
return values
@model_validator(mode="after")
def check_enabled(self):
enabled = self.tensorboard.enabled or self.wandb.enabled or self.csv_monitor.enabled or self.comet.enabled
self.__dict__["enabled"] = enabled
return self
16 changes: 0 additions & 16 deletions deepspeed/pydantic_v1.py

This file was deleted.

Loading

0 comments on commit 0a4457c

Please sign in to comment.