A JavaScript implementation of the WHATWG DOM and HTML standards, for use with Node.js.
$ npm install jsdom
Note that as of our 7.0.0 release, jsdom requires Node.js 4 or newer (why?). In the meantime you are still welcome to install a release in the 3.x series if you use legacy Node.js versions like 0.10 or 0.12. There are also various releases between 3.x and 7.0.0 that work with various io.js versions.
- Mailing list
- IRC channel: #jsdom on freenode
jsdom.env
is an API that allows you to throw a bunch of stuff at it, and it will generally do the right thing.
You can use it with a URL
// Count all of the links from the io.js build page
var jsdom = require("jsdom");
jsdom.env(
"https://iojs.org/dist/",
["http://code.jquery.com/jquery.js"],
function (err, window) {
console.log("there have been", window.$("a").length - 4, "io.js releases!");
}
);
or with raw HTML
// Run some jQuery on a html fragment
var jsdom = require("jsdom");
jsdom.env(
'<p><a class="the-link" href="https://github.com/tmpvar/jsdom">jsdom!</a></p>',
["http://code.jquery.com/jquery.js"],
function (err, window) {
console.log("contents of a.the-link:", window.$("a.the-link").text());
}
);
or with a configuration object
// Print all of the news items on Hacker News
var jsdom = require("jsdom");
jsdom.env({
url: "http://news.ycombinator.com/",
scripts: ["http://code.jquery.com/jquery.js"],
done: function (err, window) {
var $ = window.$;
console.log("HN Links");
$("td.title:not(:last) a").each(function() {
console.log(" -", $(this).text());
});
}
});
or with raw JavaScript source
// Print all of the news items on Hacker News
var jsdom = require("jsdom");
var fs = require("fs");
var jquery = fs.readFileSync("./jquery.js", "utf-8");
jsdom.env({
url: "http://news.ycombinator.com/",
src: [jquery],
done: function (err, window) {
var $ = window.$;
console.log("HN Links");
$("td.title:not(:last) a").each(function () {
console.log(" -", $(this).text());
});
}
});
The do-what-I-mean API is used like so:
jsdom.env(string, [scripts], [config], callback);
string
: may be a URL, file name, or HTML fragmentscripts
: a string or array of strings, containing file names or URLs that will be inserted as<script>
tagsconfig
: see belowcallback
: takes two argumentserr
: eithernull
, if nothing goes wrong, or an error, if the window could not be createdwindow
: a brand newwindow
, if there wasn't an error
Example:
jsdom.env(html, function (err, window) {
// free memory associated with the window
window.close();
});
If you would like to specify a configuration object only:
jsdom.env(config);
config.html
: a HTML fragmentconfig.file
: a file which jsdom will load HTML from; the resulting window'slocation.href
will be afile://
URL.config.url
: sets the resulting window'slocation.href
; ifconfig.html
andconfig.file
are not provided, jsdom will load HTML from this URL.config.scripts
: seescripts
above.config.src
: an array of JavaScript strings that will be evaluated against the resulting document. Similar toscripts
, but it accepts JavaScript instead of paths/URLs.config.cookieJar
: cookie jar which will be used by document and related resource requests. Can be created byjsdom.createCookieJar()
method. Useful to share cookie state among different documents as browsers does.config.parsingMode
: either"auto"
,"html"
, or"xml"
. The default is"auto"
, which uses HTML behavior unlessconfig.url
responds with an XMLContent-Type
, orconfig.file
contains a filename ending in.xml
or.xhtml
. Setting to"xml"
will attempt to parse the document as an XHTML document. (jsdom is currently only OK at doing that.)config.referrer
: the new document will have this referrer.config.cookie
: manually set a cookie value, e.g.'key=value; expires=Wed, Sep 21 2011 12:00:00 GMT; path=/'
. Accepts cookie string or array of cookie strings.config.headers
: an object giving any headers that will be used while loading the HTML fromconfig.url
, if applicable.config.features
: see Flexibility section below. Note: the default feature set forjsdom.env
does not include fetching remote JavaScript and executing it. This is something that you will need to carefully enable yourself.config.resourceLoader
: a function that intercepts subresource requests and allows you to re-route them, modify, or outright replace them with your own content. More below.config.done
,config.onload
,config.created
: see below.config.concurrentNodeIterators
: the maximum amount ofNodeIterator
s that you can use at the same time. The default is10
; setting this to a high value will hurt performance.config.virtualConsole
: a virtual console instance that can capture the window’s console output; see the "Capturing Console Output" examples.
Note that at least one of the callbacks (done
, onload
, or created
) is required, as is one of html
, file
, or url
.
If you just want to load the document and execute it, the done
callback shown above is the simplest. If anything goes wrong while loading the document and creating the window, the problem will show up in the error
passed as the first argument.
However, if you want more control over or insight into the initialization lifecycle, you'll want to use the created
and/or loaded
callbacks:
The created
callback is called as soon as the window is created, or if that process fails. You may access all window
properties here; however, window.document
is not ready for use yet, as the HTML has not been parsed.
The primary use-case for created
is to modify the window object (e.g. add new functions on built-in prototypes) before any scripts execute.
You can also set an event handler for 'load'
or other events on the window if you wish.
If the error
argument is non-null
, it will contain whatever loading or initialization error caused the window creation to fail; in that case window
will not be passed.
The onload
callback is called along with the window's 'load'
event. This means it will only be called if creation succeeds without error. Note that by the time it has called, any external resources will have been downloaded, and any <script>
s will have finished executing.
Now that you know about created
and onload
, you can see that done
is essentially both of them smashed together:
- If window creation fails, then
error
will be the creation error. - Otherwise,
window
will be a fully-loaded window, with all external resources downloaded and<script>
s executed.
If you load scripts asynchronously, e.g. with a module loader like RequireJS, none of the above hooks will really give you what you want. There's nothing, either in jsdom or in browsers, to say "notify me after all asynchronous loads have completed." The solution is to use the mechanisms of the framework you are using to notify about this finishing up. E.g., with RequireJS, you could do
// On the Node.js/io.js side:
var window = jsdom.jsdom(...).defaultView;
window.onModulesLoaded = function () {
console.log("ready to roll!");
};
<!-- Inside the HTML you supply to jsdom -->
<script>
requirejs(["entry-module"], function () {
window.onModulesLoaded();
});
</script>
For more details, see the discussion in #640, especially @matthewkastor's insightful comment.
Although it is easy to listen for script errors after initialization, via code like
var window = jsdom.jsdom(...).defaultView;
window.addEventListener("error", function (event) {
console.error("script error!!", event.error);
});
it is often also desirable to listen for any script errors during initialization, or errors loading scripts passed to jsdom.env
. To do this, use the virtual console feature, described in more detail later:
var virtualConsole = jsdom.createVirtualConsole();
virtualConsole.on("jsdomError", function (error) {
console.error(error.stack, error.detail);
});
var window = jsdom.jsdom(..., { virtualConsole }).defaultView;
You also get this functionality for free by default if you use virtualConsole.sendTo
; again, see more below:
var virtualConsole = jsdom.createVirtualConsole().sendTo(console);
var window = jsdom.jsdom(..., { virtualConsole }).defaultView;
By default, jsdom.env
will not process and run external JavaScript, since our sandbox is not foolproof. That is, code running inside the DOM's <script>
s can, if it tries hard enough, get access to the Node environment, and thus to your machine. If you want to (carefully!) enable running JavaScript, you can use jsdom.jsdom
, jsdom.jQueryify
, or modify the defaults passed to jsdom.env
.
The jsdom.jsdom
method does fewer things automatically; it takes in only HTML source, and it does not allow you to separately supply scripts that it will inject and execute. It just gives you back a document
object, with usable document.defaultView
, and starts asynchronously executing any <script>
s included in the HTML source. You can listen for the 'load'
event to wait until scripts are done loading and executing, just like you would in a normal HTML page.
Usage of the API generally looks like this:
var jsdom = require("jsdom").jsdom;
var doc = jsdom(markup, options);
var window = doc.defaultView;
-
markup
is a HTML document to be parsed. You can also passundefined
to get the basic document, equivalent to what a browser will give if you open up an empty.html
file. -
options
: see the explanation of theconfig
object above.
One of the goals of jsdom is to be as minimal and light as possible. This section details how someone can change the behavior of Document
s before they are created. These features are baked into the DOMImplementation
that every Document
has, and may be tweaked in two ways:
- When you create a new
Document
, by overriding the configuration:
var jsdom = require("jsdom").jsdom;
var doc = jsdom("<html><body></body></html>", {
features: {
FetchExternalResources : ["link"]
}
});
Do note, that this will only affect the document that is currently being created. All other documents will use the defaults specified below (see: Default Features).
- Before creating any documents, you can modify the defaults for all future documents:
require("jsdom").defaultDocumentFeatures = {
FetchExternalResources: ["script"],
ProcessExternalResources: false
};
Default features are extremely important for jsdom as they lower the configuration requirement and present developers a set of consistent default behaviors. The following sections detail the available features, their defaults, and the values that jsdom uses.
FetchExternalResources
- Default:
["script"]
- Allowed:
["script", "frame", "iframe", "link"]
orfalse
- Default for
jsdom.env
:false
Enables/disables fetching files over the file system/HTTP
ProcessExternalResources
- Default:
["script"]
- Allowed:
["script"]
orfalse
- Default for
jsdom.env
:false
Enables/disables JavaScript execution
SkipExternalResources
- Default:
false
(allow all) - Allowed:
/url to be skipped/
orfalse
- Example:
/http:\/\/example.org/js/bad\.js/
Filters resource downloading and processing to disallow those matching the given regular expression
jsdom lets you intercept subresource requests using config.resourceLoader
. config.resourceLoader
expects a function which is called for each subresource request with the following arguments:
resource
: a vanilla JavaScript object with the following propertieselement
: the element that requested the resource.url
: a parsed URL object.cookie
: the content of the HTTP cookie header (key=value
pairs separated by semicolons).baseUrl
: the base URL used to resolve relative URLs.defaultFetch(callback)
: a convenience method to fetch the resource online.
callback
: a function to be called with two argumentserror
: eithernull
, if nothing goes wrong, or anError
object.body
: a string representing the body of the resource.
For example, fetching all JS files from a different directory and running them in strict mode:
var jsdom = require("jsdom");
jsdom.env({
url: "http://example.com/",
resourceLoader: function (resource, callback) {
var pathname = resource.url.pathname;
if (/\.js$/.test(pathname)) {
resource.url.pathname = pathname.replace("/js/", "/js/raw/");
resource.defaultFetch(function (err, body) {
if (err) return callback(err);
callback(null, '"use strict";\n' + body);
});
} else {
resource.defaultFetch(callback);
}
},
features: {
FetchExternalResources: ["script"],
ProcessExternalResources: ["script"],
SkipExternalResources: false
}
});
jsdom includes support for using the canvas package to extend any <canvas>
elements with the canvas API. To make this work, you need to include canvas as a dependency in your project, as a peer of jsdom. If jsdom can find the canvas package, it will use it, but if it's not present, then <canvas>
elements will behave like <div>
s.
var jsdom = require("jsdom").jsdom;
var document = jsdom("hello world");
var window = document.defaultView;
console.log(window.document.documentElement.outerHTML);
// output: "<html><head></head><body>hello world</body></html>"
console.log(window.innerWidth);
// output: 1024
console.log(typeof window.document.getElementsByClassName);
// outputs: function
var jsdom = require("jsdom");
var window = jsdom.jsdom().defaultView;
jsdom.jQueryify(window, "http://code.jquery.com/jquery-2.1.1.js", function () {
window.$("body").append('<div class="testing">Hello World, It works</div>');
console.log(window.$(".testing").text());
});
var jsdom = require("jsdom").jsdom;
var window = jsdom().defaultView;
window.__myObject = { foo: "bar" };
var scriptEl = window.document.createElement("script");
scriptEl.src = "anotherScript.js";
window.document.body.appendChild(scriptEl);
// anotherScript.js will have the ability to read `window.__myObject`, even
// though it originated in Node.js/io.js!
var jsdom = require("jsdom").jsdom;
var serializeDocument = require("jsdom").serializeDocument;
var doc = jsdom("<!DOCTYPE html>hello");
serializeDocument(doc) === "<!DOCTYPE html><html><head></head><body>hello</body></html>";
doc.documentElement.outerHTML === "<html><head></head><body>hello</body></html>";
var jsdom = require("jsdom");
var cookieJar = jsdom.createCookieJar();
jsdom.env({
url: 'http://google.com',
cookieJar: cookieJar,
done: function (err1, window1) {
//...
jsdom.env({
url: 'http://code.google.com',
cookieJar: cookieJar,
done: function (err2, window2) {
//...
}
});
}
});
var jsdom = require("jsdom");
var document = jsdom.jsdom(undefined, {
virtualConsole: jsdom.createVirtualConsole().sendTo(console)
});
By default this will forward all "jsdomError"
events to console.error
. If you want to maintain only a strict one-to-one mapping of events to method calls, and perhaps handle "jsdomErrors"
yourself, then you can do sendTo(console, { omitJsdomErrors: true })
.
var jsdom = require("jsdom");
var virtualConsole = jsdom.createVirtualConsole();
virtualConsole.on("log", function (message) {
console.log("console.log called ->", message);
});
var document = jsdom.jsdom(undefined, {
virtualConsole: virtualConsole
});
Post-initialization, if you didn't pass in a virtualConsole
or no longer have a reference to it, you can retreive the virtualConsole
by using:
var virtualConsole = jsdom.getVirtualConsole(window);
Besides the usual events, corresponding to console
methods, the virtual console is also used for reporting errors from jsdom itself. This is similar to how error messages often show up in web browser consoles, even if they are not initiated by console.error
. So far, the following errors are output this way:
- Errors loading external resources (scripts, stylesheets, frames, and iframes)
- Script execution errors that are not handled by a window
onerror
event handler that returnstrue
or callsevent.preventDefault()
- Calls to methods, like
window.alert
, which jsdom does not implement, but installs anyway for web compatibility
To find where a DOM node is within the source document, we provide the jsdom.nodeLocation
function:
var jsdom = require("jsdom");
var document = jsdom.jsdom(`<p>Hello
<img src="foo.jpg">
</p>`);
var bodyEl = document.body; // implicitly created
var pEl = document.querySelector("p");
var textNode = pEl.firstChild;
var imgEl = document.querySelector("img");
console.log(jsdom.nodeLocation(bodyEl)); // null; it's not in the source
console.log(jsdom.nodeLocation(pEl)); // { start: 0, end: 39, startTag: ..., endTag: ... }
console.log(jsdom.nodeLocation(textNode)); // { start: 3, end: 13 }
console.log(jsdom.nodeLocation(imgEl)); // { start: 13, end: 32 }
This returns the parse5 location info for the node.
The top
property on window
is marked [Unforgeable]
in the spec, meaning it is a non-configurable own property and thus cannot be overridden or shadowed by normal code running inside the jsdom window, even using Object.defineProperty
. However, if you're acting from outside the window, e.g. in some test framework that creates jsdom instances, you can override it using the special jsdom.reconfigureWindow
function:
jsdom.reconfigureWindow(window, { top: myFakeTopForTesting });
In the future we may expand reconfigureWindow
to allow overriding other [Unforgeable]
properties. Let us know if you need this capability.
Our mission is to get something very close to a headless browser, with emphasis more on the DOM/HTML side of things than the CSS side. As such, our primary goals are supporting The DOM Standard and The HTML Standard. We only support some subset of these so far; in particular we have the subset covered by the outdated DOM 2 spec family down pretty well. We're slowly including more and more from the modern DOM and HTML specs, including some Node
APIs, querySelector(All)
, attribute semantics, the history and URL APIs, and the HTML parsing algorithm.
We also support some subset of the CSSOM, largely via @chad3814's excellent cssstyle package. In general we want to make webpages run headlessly as best we can, and if there are other specs we should be incorporating, let us know.