This repository has been archived by the owner on Feb 28, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #55 from gridap/affine_newmark
Affine newmark
- Loading branch information
Showing
10 changed files
with
490 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
function solve_step!( | ||
x1::NTuple{3,AbstractVector}, | ||
solver::Newmark, | ||
op::AffineODEOperator, | ||
x0::NTuple{3,AbstractVector}, | ||
t0::Real, | ||
cache) # -> (uF,tF) | ||
|
||
dt = solver.dt | ||
γ = solver.γ | ||
β = solver.β | ||
t1 = t0+dt | ||
u0, v0, a0 = x0 | ||
u1, v1, a1 = x1 | ||
newmatrix = true | ||
|
||
if cache === nothing | ||
# Allocate caches | ||
newmark_cache = allocate_cache(op,v0,a0) | ||
(v,a, ode_cache) = newmark_cache | ||
|
||
# Allocate matrices and vectors | ||
A, b = _allocate_matrix_and_vector(op,x0,ode_cache) | ||
|
||
# Create affine operator cache | ||
affOp_cache = (A,b,nothing) | ||
else | ||
newmark_cache, affOp_cache = cache | ||
end | ||
|
||
# Unpack and update caches | ||
(v,a, ode_cache) = newmark_cache | ||
ode_cache = update_cache!(ode_cache,op,t1) | ||
A,b,l_cache = affOp_cache | ||
|
||
# Define Newmark operator | ||
newmark_affOp = NewmarkAffineOperator(op,t1,dt,γ,β,(u0,v0,a0),newmark_cache) | ||
|
||
# Fill matrix and vector | ||
_matrix_and_vector!(A,b,newmark_affOp,u1) | ||
|
||
# Create affine operator with updated RHS | ||
affOp = AffineOperator(A,b) | ||
l_cache = solve!(u1,solver.nls,affOp,l_cache,newmatrix) | ||
|
||
# Update auxiliar variables | ||
u1 = u1 + u0 | ||
v1 = γ/(β*dt)*(u1-u0) + (1-γ/β)*v0 + dt*(1-γ/(2*β))*a0 | ||
a1 = 1.0/(β*dt^2)*(u1-u0) - 1.0/(β*dt)*v0 - (1-2*β)/(2*β)*a0 | ||
|
||
# Pack caches | ||
affOp_cache = A,b,l_cache | ||
cache = (newmark_cache, affOp_cache) | ||
x1 = (u1,v1,a1) | ||
|
||
return (x1,t1,cache) | ||
|
||
end | ||
|
||
""" | ||
Affine operator that represents the Newmark Affine operator at a | ||
given time step, i.e., M(t)(u_n+1-u_n)/dt + K(t)u_n+1 + b(t) | ||
""" | ||
struct NewmarkAffineOperator <: NonlinearOperator | ||
odeop::AffineODEOperator | ||
t1::Float64 | ||
dt::Float64 | ||
γ::Float64 | ||
β::Float64 | ||
x0::NTuple{3,AbstractVector} | ||
ode_cache | ||
end | ||
|
||
function _matrix_and_vector!( | ||
A::AbstractMatrix, | ||
b::AbstractVector, | ||
affOp::NewmarkAffineOperator, | ||
x::AbstractVector) | ||
jacobian!(A,affOp,x) | ||
residual!(b,affOp,x) | ||
end | ||
|
||
function residual!(b::AbstractVector,op::NewmarkAffineOperator,x::AbstractVector) | ||
u1 = x | ||
u0, v0, a0 = op.x0 | ||
v1, a1, cache = op.ode_cache | ||
a1 = 1.0/(op.β*op.dt^2)*(u1-u0) - 1.0/(op.β*op.dt)*v0 - (1-2*op.β)/(2*op.β)*a0 | ||
v1 = op.γ/(op.β*op.dt)*(u1-u0) + (1-op.γ/op.β)*v0 + op.dt*(1-op.γ/(2*op.β))*a0 | ||
residual!(b,op.odeop,op.t1,(u1,v1,a1),cache) | ||
b .*= -1.0 | ||
end | ||
|
||
function jacobian!(A::AbstractMatrix,op::NewmarkAffineOperator,x::AbstractVector) | ||
u1 = x | ||
u0, v0, a0 = op.x0 | ||
v1, a1, cache = op.ode_cache | ||
a1 = 1.0/(op.β*op.dt^2)*(u1-u0) - 1.0/(op.β*op.dt)*v0 - (1-2*op.β)/(2*op.β)*a0 | ||
v1 = op.γ/(op.β*op.dt)*(u1-u0) + (1-op.γ/op.β)*v0 + op.dt*(1-op.γ/(2*op.β))*a0 | ||
z = zero(eltype(A)) | ||
fill_entries!(A,z) | ||
jacobians!(A,op.odeop,op.t1,(u1,v1,a1),(1.0,op.γ/(op.β*op.dt),1.0/(op.β*op.dt^2)),cache) | ||
end | ||
|
||
function _allocate_matrix(odeop::ODEOperator,x::Tuple{Vararg{AbstractVector}},ode_cache) | ||
A = allocate_jacobian(odeop,x[1],ode_cache) | ||
return A | ||
end | ||
|
||
function _allocate_matrix_and_vector(odeop::ODEOperator,x::Tuple{Vararg{AbstractVector}},ode_cache) | ||
b = allocate_residual(odeop,x[1],ode_cache) | ||
A = allocate_jacobian(odeop,x[1],ode_cache) | ||
return A, b | ||
end | ||
|
||
# # function allocate_residual(op::NewmarkAffineOperator,x::AbstractVector) | ||
# # v1, a1, cache = op.ode_cache | ||
# # allocate_residual(op.odeop,x,cache) | ||
# # end | ||
|
||
# # function allocate_jacobian(op::NewmarkAffineOperator,x::AbstractVector) | ||
# # v1, a1, cache = op.ode_cache | ||
# # allocate_jacobian(op.odeop,x,cache) | ||
# # end | ||
|
||
# function _allocate_matrix_and_vector(op::NewmarkAffineOperator,x::AbstractVector) | ||
# A = allocate_jacobian(op,x) | ||
# b = allocate_residual(op,x) | ||
# return A,b | ||
# end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
function solve_step!( | ||
x1::NTuple{3,AbstractVector}, | ||
solver::Newmark, | ||
op::ConstantMatrixODEOperator, | ||
x0::NTuple{3,AbstractVector}, | ||
t0::Real, | ||
cache) # -> (uF,tF) | ||
|
||
dt = solver.dt | ||
γ = solver.γ | ||
β = solver.β | ||
t1 = t0+dt | ||
u0, v0, a0 = x0 | ||
u1, v1, a1 = x1 | ||
|
||
if cache === nothing | ||
newmatrix = true | ||
|
||
# Allocate caches | ||
newmark_cache = allocate_cache(op,v0,a0) | ||
(v,a, ode_cache) = newmark_cache | ||
|
||
# Define Newmark operator | ||
newmark_affOp = NewmarkConstantMatrixOperator(op,t1,dt,γ,β,(u0,v0,a0),newmark_cache) | ||
|
||
# Allocate matrices and vectors | ||
A, b = _allocate_matrix_and_vector(op,x0,ode_cache) | ||
jacobian!(A,newmark_affOp,u1) | ||
|
||
# Create affine operator cache | ||
affOp_cache = (A,b,newmark_affOp,nothing) | ||
else | ||
newmatrix = false | ||
newmark_cache, affOp_cache = cache | ||
end | ||
|
||
# Unpack and update caches | ||
(v,a, ode_cache) = newmark_cache | ||
ode_cache = update_cache!(ode_cache,op,t1) | ||
A,b,newmark_affOp,l_cache = affOp_cache | ||
|
||
# Fill vector | ||
newmark_affOp = NewmarkConstantMatrixOperator(op,t1,dt,γ,β,x0,newmark_cache) | ||
residual!(b,newmark_affOp,u1) | ||
|
||
# Create affine operator with updated RHS | ||
affOp = AffineOperator(A,b) | ||
l_cache = solve!(u1,solver.nls,affOp,l_cache,newmatrix) | ||
|
||
# Update auxiliar variables | ||
u1 = u1 + u0 | ||
v1 = γ/(β*dt)*(u1-u0) + (1-γ/β)*v0 + dt*(1-γ/(2*β))*a0 | ||
a1 = 1.0/(β*dt^2)*(u1-u0) - 1.0/(β*dt)*v0 - (1-2*β)/(2*β)*a0 | ||
|
||
# Pack caches | ||
affOp_cache = A,b,newmark_affOp,l_cache | ||
cache = (newmark_cache, affOp_cache) | ||
x1 = (u1,v1,a1) | ||
|
||
return (x1,t1,cache) | ||
|
||
end | ||
|
||
""" | ||
Affine operator that represents the Newmark Affine operator with constant | ||
matrix at a given time step, i.e., M(u_n+1-u_n)/dt + K u_n+1 + b(t) | ||
""" | ||
mutable struct NewmarkConstantMatrixOperator <: NonlinearOperator | ||
odeop::ConstantMatrixODEOperator | ||
t1::Float64 | ||
dt::Float64 | ||
γ::Float64 | ||
β::Float64 | ||
x0::NTuple{3,AbstractVector} | ||
ode_cache | ||
end | ||
|
||
function residual!(b::AbstractVector,op::NewmarkConstantMatrixOperator,x::AbstractVector) | ||
u1 = x | ||
u0, v0, a0 = op.x0 | ||
v1, a1, cache = op.ode_cache | ||
a1 = 1.0/(op.β*op.dt^2)*(u1-u0) - 1.0/(op.β*op.dt)*v0 - (1-2*op.β)/(2*op.β)*a0 | ||
v1 = op.γ/(op.β*op.dt)*(u1-u0) + (1-op.γ/op.β)*v0 + op.dt*(1-op.γ/(2*op.β))*a0 | ||
residual!(b,op.odeop,op.t1,(u1,v1,a1),cache) | ||
b .*= -1.0 | ||
end | ||
|
||
function jacobian!(A::AbstractMatrix,op::NewmarkConstantMatrixOperator,x::AbstractVector) | ||
u1 = x | ||
u0, v0, a0 = op.x0 | ||
v1, a1, cache = op.ode_cache | ||
a1 = 1.0/(op.β*op.dt^2)*(u1-u0) - 1.0/(op.β*op.dt)*v0 - (1-2*op.β)/(2*op.β)*a0 | ||
v1 = op.γ/(op.β*op.dt)*(u1-u0) + (1-op.γ/op.β)*v0 + op.dt*(1-op.γ/(2*op.β))*a0 | ||
z = zero(eltype(A)) | ||
fill_entries!(A,z) | ||
jacobians!(A,op.odeop,op.t1,(u1,v1,a1),(1.0,op.γ/(op.β*op.dt),1.0/(op.β*op.dt^2)),cache) | ||
end | ||
|
||
function _allocate_matrix(odeop::NewmarkConstantMatrixOperator,x::Tuple{Vararg{AbstractVector}},ode_cache) | ||
A = allocate_jacobian(odeop,x[1],ode_cache) | ||
return A | ||
end | ||
|
||
function _allocate_matrix_and_vector(odeop::NewmarkConstantMatrixOperator,x::Tuple{Vararg{AbstractVector}},ode_cache) | ||
b = allocate_residual(odeop,x[1],ode_cache) | ||
A = allocate_jacobian(odeop,x[1],ode_cache) | ||
return A, b | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
function solve_step!( | ||
x1::NTuple{3,AbstractVector}, | ||
solver::Newmark, | ||
op::ConstantODEOperator, | ||
x0::NTuple{3,AbstractVector}, | ||
t0::Real, | ||
cache) # -> (uF,tF) | ||
|
||
dt = solver.dt | ||
γ = solver.γ | ||
β = solver.β | ||
t1 = t0+dt | ||
u0, v0, a0 = x0 | ||
u1, v1, a1 = x1 | ||
|
||
if cache === nothing | ||
# Auxiliar variables | ||
newmatrix = true | ||
|
||
# Allocate caches | ||
newmark_cache = allocate_cache(op,v0,a0) | ||
(v,a, ode_cache) = newmark_cache | ||
|
||
# Allocate matrices and vectors | ||
A, b = _allocate_matrix_and_vector(op,x0,ode_cache) | ||
M = _allocate_matrix(op,x0,ode_cache) | ||
C = _allocate_matrix(op,x0,ode_cache) | ||
b1 = similar(b) | ||
b1 .= 0.0 | ||
|
||
# Define Newmark operator | ||
newmark_affOp = NewmarkConstantOperator(op,t1,dt,γ,β,(u0,v0,a0),newmark_cache) | ||
|
||
# Fill matrices and vector | ||
_matrix!(A,newmark_affOp,u1) | ||
_mass_matrix!(M,newmark_affOp,u1) | ||
_damping_matrix!(C,newmark_affOp,u1) | ||
|
||
# Create affine operator cache | ||
affOp_cache = (A,b,M,C,newmark_affOp,nothing) | ||
else | ||
newmark_cache, affOp_cache = cache | ||
newmatrix = false | ||
end | ||
|
||
# Unpack and update caches | ||
(v,a, ode_cache) = newmark_cache | ||
ode_cache = update_cache!(ode_cache,op,t1) | ||
A,b,M,C,newmark_affOp,l_cache = affOp_cache | ||
|
||
# Update RHS | ||
_vector!(b,newmark_affOp,u1) | ||
b1 = b + ( M*(1.0/(β*dt^2)) + C*(γ/(β*dt)) )*u0 + | ||
( M*(1.0/(β*dt)) - C*(1-γ/β) )*v0 + | ||
( M*(1-2*β)/(2*β) - C*(dt*(1-γ/(2*β))) )*a0 | ||
|
||
# Create affine operator with updated RHS | ||
affOp = AffineOperator(A,b1) | ||
l_cache = solve!(u1,solver.nls,affOp,l_cache,newmatrix) | ||
|
||
# Update auxiliar variables | ||
v1 = γ/(β*dt)*(u1-u0) + (1-γ/β)*v0 + dt*(1-γ/(2*β))*a0 | ||
a1 = 1.0/(β*dt^2)*(u1-u0) - 1.0/(β*dt)*v0 - (1-2*β)/(2*β)*a0 | ||
|
||
# Pack caches | ||
affOp_cache = A,b,M,C,newmark_affOp,l_cache | ||
cache = (newmark_cache, affOp_cache) | ||
x1 = (u1,v1,a1) | ||
|
||
return (x1,t1,cache) | ||
|
||
end | ||
|
||
""" | ||
Constant operator that represents the Newmark Affine operator at a | ||
given time step, i.e., M(t)(u_n+1-u_n)/dt + K(t)u_n+1 + b(t) | ||
""" | ||
struct NewmarkConstantOperator <: NonlinearOperator | ||
odeop::ConstantODEOperator | ||
t1::Float64 | ||
dt::Float64 | ||
γ::Float64 | ||
β::Float64 | ||
x0::NTuple{3,AbstractVector} | ||
ode_cache | ||
end | ||
|
||
function _matrix_and_vector!( | ||
A::AbstractMatrix, | ||
b::AbstractVector, | ||
affOp::NewmarkConstantOperator, | ||
x::AbstractVector) | ||
jacobian!(A,affOp,x) | ||
residual!(b,affOp,x) | ||
end | ||
|
||
function _matrix!( | ||
A::AbstractMatrix, | ||
affOp::NewmarkConstantOperator, | ||
x::AbstractVector) | ||
jacobian!(A,affOp,x) | ||
end | ||
|
||
function _vector!( | ||
b::AbstractVector, | ||
affOp::NewmarkConstantOperator, | ||
x::AbstractVector) | ||
residual!(b,affOp,x) | ||
end | ||
|
||
function residual!(b::AbstractVector,op::NewmarkConstantOperator,x::AbstractVector) | ||
u1 = x | ||
u0, v0, a0 = op.x0 | ||
v1, a1, cache = op.ode_cache | ||
a1 = 1.0/(op.β*op.dt^2)*(u1-u0) - 1.0/(op.β*op.dt)*v0 - (1-2*op.β)/(2*op.β)*a0 | ||
v1 = op.γ/(op.β*op.dt)*(u1-u0) + (1-op.γ/op.β)*v0 + op.dt*(1-op.γ/(2*op.β))*a0 | ||
residual!(b,op.odeop,op.t1,(u1,v1,a1),cache) | ||
b .*= -1.0 | ||
end | ||
|
||
function jacobian!(A::AbstractMatrix,op::NewmarkConstantOperator,x::AbstractVector) | ||
u1 = x | ||
u0, v0, a0 = op.x0 | ||
v1, a1, cache = op.ode_cache | ||
a1 = 1.0/(op.β*op.dt^2)*(u1-u0) - 1.0/(op.β*op.dt)*v0 - (1-2*op.β)/(2*op.β)*a0 | ||
v1 = op.γ/(op.β*op.dt)*(u1-u0) + (1-op.γ/op.β)*v0 + op.dt*(1-op.γ/(2*op.β))*a0 | ||
z = zero(eltype(A)) | ||
fill_entries!(A,z) | ||
jacobians!(A,op.odeop,op.t1,(u1,v1,a1),(1.0,op.γ/(op.β*op.dt),1.0/(op.β*op.dt^2)),cache) | ||
end | ||
|
||
function _mass_matrix!(A::AbstractMatrix,op::NewmarkConstantOperator,x::AbstractVector) | ||
u1 = x | ||
u0, v0, a0 = op.x0 | ||
v1, a1, cache = op.ode_cache | ||
a1 = 1.0/(op.β*op.dt^2)*(u1-u0) - 1.0/(op.β*op.dt)*v0 - (1-2*op.β)/(2*op.β)*a0 | ||
v1 = op.γ/(op.β*op.dt)*(u1-u0) + (1-op.γ/op.β)*v0 + op.dt*(1-op.γ/(2*op.β))*a0 | ||
z = zero(eltype(A)) | ||
fill_entries!(A,z) | ||
jacobian!(A,op.odeop,op.t1,(u1,v1,a1),3,1.0,cache) | ||
end | ||
|
||
function _damping_matrix!(A::AbstractMatrix,op::NewmarkConstantOperator,x::AbstractVector) | ||
u1 = x | ||
u0, v0, a0 = op.x0 | ||
v1, a1, cache = op.ode_cache | ||
a1 = 1.0/(op.β*op.dt^2)*(u1-u0) - 1.0/(op.β*op.dt)*v0 - (1-2*op.β)/(2*op.β)*a0 | ||
v1 = op.γ/(op.β*op.dt)*(u1-u0) + (1-op.γ/op.β)*v0 + op.dt*(1-op.γ/(2*op.β))*a0 | ||
z = zero(eltype(A)) | ||
fill_entries!(A,z) | ||
jacobian!(A,op.odeop,op.t1,(u1,v1,a1),2,1.0,cache) | ||
end |
Oops, something went wrong.