-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5e7c471
commit 1a61897
Showing
8 changed files
with
176 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
|
||
function Fields.gradient(f::Function,uh::DistributedCellField) | ||
fuh = f(uh) | ||
FESpaces._gradient(f,uh,fuh) | ||
end | ||
|
||
function FESpaces._gradient(f,uh,fuh::DistributedDomainContribution) | ||
local_terms = map(r -> DomainContribution(), get_parts(fuh)) | ||
local_domains = tuple_of_arrays(map(Tuple∘get_domains,local_views(fuh))) | ||
for local_trians in local_domains | ||
g = FESpaces._change_argument(gradient,f,local_trians,uh) | ||
cell_u = map(get_cell_dof_values,local_views(uh)) | ||
cell_id = map(FESpaces._compute_cell_ids,local_views(uh),local_trians) | ||
cell_grad = distributed_autodiff_array_gradient(g,cell_u,cell_id) | ||
map(add_contribution!,local_terms,local_trians,cell_grad) | ||
end | ||
DistributedDomainContribution(local_terms) | ||
end | ||
|
||
function Fields.jacobian(f::Function,uh::DistributedCellField) | ||
fuh = f(uh) | ||
FESpaces._jacobian(f,uh,fuh) | ||
end | ||
|
||
function FESpaces._jacobian(f,uh,fuh::DistributedDomainContribution) | ||
local_terms = map(r -> DomainContribution(), get_parts(fuh)) | ||
local_domains = tuple_of_arrays(map(Tuple∘get_domains,local_views(fuh))) | ||
for local_trians in local_domains | ||
g = FESpaces._change_argument(jacobian,f,local_trians,uh) | ||
cell_u = map(get_cell_dof_values,local_views(uh)) | ||
cell_id = map(FESpaces._compute_cell_ids,local_views(uh),local_trians) | ||
cell_grad = distributed_autodiff_array_jacobian(g,cell_u,cell_id) | ||
map(add_contribution!,local_terms,local_trians,cell_grad) | ||
end | ||
DistributedDomainContribution(local_terms) | ||
end | ||
|
||
function FESpaces._change_argument(op,f,trian,uh::DistributedCellField) | ||
spaces = map(get_fe_space,local_views(uh)) | ||
function g(cell_u) | ||
cf = DistributedCellField( | ||
map(CellField,spaces,cell_u), | ||
get_triangulation(uh), | ||
) | ||
cell_grad = f(cf) | ||
map(get_contribution,local_views(cell_grad),trian) | ||
end | ||
g | ||
end | ||
|
||
# autodiff_array_xxx | ||
|
||
function distributed_autodiff_array_gradient(a,i_to_x) | ||
dummy_forwarddiff_tag = ()->() | ||
i_to_xdual = map(i_to_x) do i_to_x | ||
lazy_map(DualizeMap(ForwardDiff.gradient,dummy_forwarddiff_tag),i_to_x) | ||
end | ||
i_to_ydual = a(i_to_xdual) | ||
i_to_result = map(i_to_ydual,i_to_x) do i_to_ydual,i_to_x | ||
i_to_cfg = lazy_map(ConfigMap(ForwardDiff.gradient,dummy_forwarddiff_tag),i_to_x) | ||
lazy_map(AutoDiffMap(ForwardDiff.gradient),i_to_ydual,i_to_x,i_to_cfg) | ||
end | ||
return i_to_result | ||
end | ||
|
||
function distributed_autodiff_array_jacobian(a,i_to_x) | ||
dummy_forwarddiff_tag = ()->() | ||
i_to_xdual = map(i_to_x) do i_to_x | ||
lazy_map(DualizeMap(ForwardDiff.jacobian,dummy_forwarddiff_tag),i_to_x) | ||
end | ||
i_to_ydual = a(i_to_xdual) | ||
i_to_result = map(i_to_ydual,i_to_x) do i_to_ydual,i_to_x | ||
i_to_cfg = lazy_map(ConfigMap(ForwardDiff.jacobian,dummy_forwarddiff_tag),i_to_x) | ||
lazy_map(AutoDiffMap(ForwardDiff.jacobian),i_to_ydual,i_to_x,i_to_cfg) | ||
end | ||
i_to_result | ||
end | ||
|
||
function distributed_autodiff_array_gradient(a,i_to_x,j_to_i) | ||
dummy_forwarddiff_tag = ()->() | ||
i_to_xdual = map(i_to_x) do i_to_x | ||
lazy_map(DualizeMap(ForwardDiff.gradient,dummy_forwarddiff_tag),i_to_x) | ||
end | ||
j_to_ydual = a(i_to_xdual) | ||
j_to_result = map(i_to_x,j_to_i,j_to_ydual) do i_to_x,j_to_i,j_to_ydual | ||
j_to_x = lazy_map(Reindex(i_to_x),j_to_i) | ||
j_to_cfg = lazy_map(ConfigMap(ForwardDiff.gradient,dummy_forwarddiff_tag),j_to_x) | ||
lazy_map(AutoDiffMap(ForwardDiff.gradient),j_to_ydual,j_to_x,j_to_cfg) | ||
end | ||
return j_to_result | ||
end | ||
|
||
function distributed_autodiff_array_jacobian(a,i_to_x,j_to_i) | ||
dummy_forwarddiff_tag = ()->() | ||
i_to_xdual = map(i_to_x) do i_to_x | ||
lazy_map(DualizeMap(ForwardDiff.jacobian,dummy_forwarddiff_tag),i_to_x) | ||
end | ||
j_to_ydual = a(i_to_xdual) | ||
j_to_result = map(i_to_x,j_to_i,j_to_ydual) do i_to_x,j_to_i,j_to_ydual | ||
j_to_x = lazy_map(Reindex(i_to_x),j_to_i) | ||
j_to_cfg = lazy_map(ConfigMap(ForwardDiff.jacobian,dummy_forwarddiff_tag),j_to_x) | ||
lazy_map(AutoDiffMap(ForwardDiff.jacobian),j_to_ydual,j_to_x,j_to_cfg) | ||
end | ||
j_to_result | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
module AtodiffTests | ||
|
||
using Test | ||
using Gridap, Gridap.Algebra | ||
using GridapDistributed | ||
using PartitionedArrays | ||
|
||
function main(distribute,parts) | ||
ranks = distribute(LinearIndices((prod(parts),))) | ||
|
||
domain = (0,4,0,4) | ||
cells = (4,4) | ||
model = CartesianDiscreteModel(ranks,parts,domain,cells) | ||
|
||
u((x,y)) = (x+y)^k | ||
σ(∇u) = (1.0+∇u⋅∇u)*∇u | ||
dσ(∇du,∇u) = (2*∇u⋅∇du)*∇u + (1.0+∇u⋅∇u)*∇du | ||
f(x) = -divergence(y->σ(∇(u,y)),x) | ||
|
||
k = 1 | ||
reffe = ReferenceFE(lagrangian,Float64,k) | ||
V = TestFESpace(model,reffe,dirichlet_tags="boundary") | ||
U = TrialFESpace(u,V) | ||
|
||
Ω = Triangulation(model) | ||
dΩ = Measure(Ω,2*k) | ||
r(u,v) = ∫( ∇(v)⋅(σ∘∇(u)) - v*f )dΩ | ||
j(u,du,v) = ∫( ∇(v)⋅(dσ∘(∇(du),∇(u))) )dΩ | ||
|
||
op = FEOperator(r,j,U,V) | ||
op_AD = FEOperator(r,U,V) | ||
|
||
uh = interpolate(1.0,U) | ||
A = jacobian(op,uh) | ||
A_AD = jacobian(op_AD,uh) | ||
@test reduce(&,map(≈,partition(A),partition(A_AD))) | ||
|
||
g(v) = ∫(0.5*v⋅v)dΩ | ||
dg(v) = ∫(uh⋅v)dΩ | ||
b = assemble_vector(dg,U) | ||
b_AD = assemble_vector(gradient(g,uh),U) | ||
@test b ≈ b_AD | ||
end | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
module AutodiffTestsSeq | ||
using PartitionedArrays | ||
include("../AutodiffTests.jl") | ||
with_debug() do distribute | ||
AutodiffTests.main(distribute,(2,2)) | ||
end | ||
end # module |