Contact: Florian Windolf
Tested with:
- llvm 5.0.2
- clang 5.0.2
- cuda 9.2.148
For Pangolin, see dependencies section:
- OpenGL
- Glew (libglew-dev)
For Cuda-image, see dependencies section
- Pangolin
OpenCV3.4 required
Either use the setup.sh
script by running source setup.sh
, that automatically gathers dependencies, or manually install everything
Every step is meant to be executed from source directory.
-
Set clang as the default C++ compiler (Opt doesnt work without it...)
-
Init submodules (Opt, Pangolin, cuda-image)
git submodules update --init
- Build and install Pangolin
cd third_party/Pangolin
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=.. -DCMAKE_BUILD_TYPE=Release
make -j8 install
- Build and install cuda-image
cd third_party/cuda-image
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=.. -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED=ON -DPANGOLIN_DIR=../../Pangolin -DEIGEN3_INCLUDE_DIR=$SOURCE_DIR/third_party/Eigen/include
make -j8 install
- Download terra
cd third_party
wget https://github.com/zdevito/terra/releases/download/release-1.0.0-beta1/terra-Linux-x86_64-2e2032e.zip
unzip -q -o terra-Linux-x86_64-2e2032e.zip
ln -s terra-Linux-x86_64-2e2032e terra
rm terra-Linux-x86_64-2e2032e.zip
- Build and install Opt
cd third_party/Opt/API
make
cd SOURCE_DIR
- Finally build this repo (set clang as compiler for C++ in order for Opt to build properly)
mkdir build && cd build
export CXX=/usr/bin/clang++
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j8
You then can run an example appliation by ./bin/AppSfs
.
If Opt fails, try building terra for your distribution, following the provided instructions For me, it took several tries to get terra/Opt to work together. The whole setup is super fragile, so if you get it to run, do not change anything :D
Runs Shape from shading on a single input (image, mask, depth).
SFS Application
Usage: ./bin/AppSfs [OPTIONS]
Options:
-h,--help Print this help message and exit
-a,--optim_alpha FLOAT=-1 Albedo Update : Smoothness of albedo, -1 (=infinity) for piecewise constant
-l,--optim_lambda FLOAT=0.5 Albedo Update : Tradeoff between smoothness and number of jumps
-i,--optim_iter FLOAT=200 Albedo Update : Maximum number of iterations per step
-g,--optim_gamma FLOAT=1 Theta Update : Influence of the SfS term
-n,--optim_nu FLOAT=0.0001 Theta Update : Minimal surface weight for the output depth
-m,--optim_mu FLOAT=0.001 Depth Update : Weight controlling the influence of the original depth
-k,--admm_kappa FLOAT=0.0001
ADMM Parameter: Initial Step size for the dual update
-t,--admm_tau FLOAT=2 ADMM Parameter: Penalty parameter, by which kappa is increased per iteration
-o,--admm_tolerance FLOAT=1e-06
ADMM Parameter: Tolerance of the relative error between theta and thetaZ
-e,--admm_tolerance_EL FLOAT=1e-06
ADMM Parameter: Tolerance of the residual of the primal dual update
-d,--dataset_path TEXT=/home/flo/projects/sfs-sr-single/data/android/
Data Parameter: Path to the root directory of data
-f,--dataset_frame_num INT=0
Data Parameter: Number/Frame of in a set of data
-r,--dataset_resolution INT=[640,480] ... REQUIRED
Data Parameter: Width of the upsampled data
-b,--dataset_depth_sigma FLOAT
Data Parameter: Blur the initial depth
--dataset_gt_depth Data Parameter: Use optimal depth for LR depth (will be bilaterally filtered before usage)
--dataset_gt_albedo Data Parameter: Use optimal albedo as input
--dataset_gt_light Data Parameter: Use optimal light as input
--dataset_smooth_depth Data Parameter: Smooth depth initialization
--dataset_prefer_image Data Parameter: Use the loaded image over the generated
-s,--output_results_folder TEXT
Out Parameter : Path to save output images, results.
-p,--output_run_folder TEXT Out Parameter : Run folder to save output to.
--iter_theta_outer INT Iterations Parameter: Number of outer theta iterations
--iter_theta_inner INT Iterations Parameter: Number of inner theta iterations
--iter_depth_outer INT Iterations Parameter: Number of outer depth iterations
--iter_depth_inner INT Iterations Parameter: Number of inner depth iterations
If the output is still very close to the original depth, try:
- Increasing the smoothing (
--optim_nu
). This will most likely lead to oversmooth depth maps, that are however visually pleasing. - Decrease the fidelty (
--optim_mu
). This will allow the depth to change more and not be as close to the original depth. - Increasing the number of iterations (
--iter_theta_inner
/--iter_theta_outer
) for the Theta update. This will however increase the runtime a bit. - Decreasing the initial ADMM step size (
--admm_kappa
) or penalty (--admm_tau
). I have not seen improvements for kappa < 1e-6. Reducing tau to <1.5 will lead to very long runtimes. - If the optimization stops after one iteration, disable the tolerance stopping criterion (
--admm_tolerance
to 0) or decrease the tolerances.
For original images with motion blur, it might be neccessary to increase the influence of the SfS data term (--optim_gamma
).
If the albedo is under segmented, lower the jump penalty parameter --optim_lambda
. If oversegmented, increase the parameter. Generally, low values will need more iterations to converge (as the areas with constant colors are bigger).
The dataset implementation will expect to find
- an image named
color.png
- a low resolution depth map
depth.png
- a (optional) mask
mask.png
- two (optional) files containing the camera parameters for depth and color images.
If there is a depth.exr
, albedo.png
or light.txt
present, you can also use the --dataset_gt_...
parameters to use and not optimize the albedos.
whose original code I ported to some extent. You can find it at his github as well as the original publication
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License with an additional request:
If you make use of the library or this code in any scientific publication, please refer to this repository and cite the original paper
@inproceedings{Haefner2018CVPR,
title = {Fight ill-posedness with ill-posedness: Single-shot variational depth super-resolution from shading},
author = {Haefner, B. and Quéau, Y. and Möllenhoff, T. and Cremers, D.},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2018},
titleurl = {},
}