-
Notifications
You must be signed in to change notification settings - Fork 74
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Update sentiment-analysis-tutorial for Python
Signed-off-by: Mikkel Mørk Hegnhøj <[email protected]> Fix formatters opinions Signed-off-by: Mikkel Mørk Hegnhøj <[email protected]>
- Loading branch information
1 parent
54094b7
commit 8c0cced
Showing
1 changed file
with
135 additions
and
55 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -6,6 +6,7 @@ enable_shortcodes = true | |
url = "https://github.com/fermyon/developer/blob/main/content/spin/v3/ai-sentiment-analysis-api-tutorial.md" | ||
|
||
--- | ||
|
||
- [Tutorial Prerequisites](#tutorial-prerequisites) | ||
- [Spin](#spin) | ||
- [Dependencies](#dependencies) | ||
|
@@ -36,15 +37,15 @@ Artificial Intelligence (AI) Inferencing performs well on GPUs. However, GPU inf | |
|
||
In this tutorial we will: | ||
|
||
* Update Spin (and dependencies) on your local machine | ||
* Create a Serverless AI application | ||
* Learn about the Serverless AI SDK | ||
- Update Spin (and dependencies) on your local machine | ||
- Create a Serverless AI application | ||
- Learn about the Serverless AI SDK | ||
|
||
## Tutorial Prerequisites | ||
|
||
### Spin | ||
### Spin | ||
|
||
You will need to [install the latest version of Spin](install#installing-spin). This tutorial requires Spin 3.0 or greater. | ||
You will need to [install the latest version of Spin](install#installing-spin). This tutorial requires Spin 3.0 or greater. | ||
|
||
If you already have Spin installed, [check what version you are on and upgrade](upgrade#are-you-on-the-latest-version) if required. | ||
|
||
|
@@ -92,7 +93,7 @@ $ spin templates install --git https://github.com/fermyon/spin --upgrade | |
|
||
> This tutorial uses [Meta AI](https://ai.meta.com/)'s Llama 2, Llama Chat and Code Llama models you will need to visit [Meta's Llama webpage](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and agree to Meta's License, Acceptable Use Policy, and to Meta’s privacy policy before fetching and using Llama models. | ||
## Serverless AI Inferencing With Spin Applications | ||
## Serverless AI Inferencing With Spin Applications | ||
|
||
Now, let's dive deep into a comprehensive tutorial and unlock your potential to use Fermyon Serverless AI. | ||
**Note:** The full source code with other examples can be found in our [Github repo](https://github.com/fermyon/ai-examples/tree/main) | ||
|
@@ -125,6 +126,7 @@ The TypeScript code snippets below are taken from the [Fermyon Serverless AI Exa | |
> Note: please add `/api/...` when prompted for the path; this provides us with an API endpoint to query the sentiment analysis component. | ||
<!-- @selectiveCpy --> | ||
|
||
```bash | ||
$ spin new -t http-ts | ||
Enter a name for your new application: sentiment-analysis | ||
|
@@ -139,6 +141,7 @@ HTTP path: /api/... | |
The Python code snippets below are taken from the [Fermyon Serverless AI Examples](https://github.com/fermyon/ai-examples/tree/main/sentiment-analysis-py) | ||
|
||
> Note: please add `/api/...` when prompted for the path; this provides us with an API endpoint to query the sentiment analysis component. | ||
<!-- @selectiveCpy --> | ||
|
||
```bash | ||
|
@@ -153,6 +156,7 @@ HTTP path: /api/... | |
{{ startTab "TinyGo" }} | ||
|
||
> Note: please add `/api/...` when prompted for the path; this provides us with an API endpoint to query the sentiment analysis component. | ||
<!-- @selectiveCpy --> | ||
|
||
```bash | ||
|
@@ -169,6 +173,7 @@ HTTP path: /api/... | |
### Supported AI Models | ||
|
||
Fermyon's Spin and Serverless AI currently support: | ||
|
||
- Meta's open source Large Language Models (LLMs) [Llama](https://ai.meta.com/llama/), specifically the `llama2-chat` and `codellama-instruct` models (see Meta [Licenses](#licenses) section above). | ||
- SentenceTransformers' [embeddings](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) models, specifically the `all-minilm-l6-v2` model. | ||
|
||
|
@@ -271,6 +276,7 @@ Now let's use the Spin SDK to access the model from our app: | |
{{ startTab "Rust"}} | ||
|
||
The Rust source code for this sentiment analysis example uses serde. There are a couple of ways to add the required serde dependencies: | ||
|
||
- Run `cargo add serde -F derive` and `cargo add serde_json` from your Rust application's home directory (which will automatically update your application's `Cargo.toml` file), or | ||
- Manually, edit your Rust application's `Cargo.toml` file by adding the following lines beneath the `Cargo.toml` file's `[dependencies]` section: | ||
|
||
|
@@ -570,11 +576,9 @@ export const handleRequest: HandleRequest = async function ( | |
{{ startTab "Python"}} | ||
|
||
```python | ||
from spin_http import Response | ||
from spin_llm import llm_infer | ||
from spin_key_value import kv_open_default | ||
from spin_sdk import http, llm, key_value | ||
from spin_sdk.http import Request, Response | ||
import json | ||
import re | ||
|
||
PROMPT="""<<SYS>> | ||
You are a bot that generates sentiment analysis responses. Respond with a single positive, negative, or neutral. | ||
|
@@ -594,31 +598,32 @@ Bot: negative | |
[/INST] | ||
User: """ | ||
|
||
def handle_request(request): | ||
# Extracting the sentence from the request | ||
request_body=json.loads(request.body) | ||
sentence=request_body["sentence"].strip() | ||
print("Performing sentiment analysis on: " + sentence) | ||
|
||
# Open the default KV store | ||
store = kv_open_default() | ||
|
||
# Check if the sentence is already in the KV store | ||
if store.exists(sentence) is False: | ||
result=llm_infer("llama2-chat", PROMPT+sentence).text | ||
print("Raw result: " + result) | ||
sentiment = get_sentiment_from_sentence(result) | ||
print("Storing result in the KV store") | ||
store.set(sentence, str.encode(sentiment)) | ||
else: | ||
sentiment = store.get(sentence).decode() | ||
print("Found a cached result") | ||
|
||
response_body=json.dumps({"sentence": sentiment}) | ||
|
||
return Response(200, | ||
{"content-type": "application/json"}, | ||
bytes(response_body, "utf-8")) | ||
class IncomingHandler(http.IncomingHandler): | ||
def handle_request(self, request: Request) -> Response: | ||
# Extracting the sentence from the request_body | ||
request_body=json.loads(request.body) | ||
sentence=request_body["sentence"].strip() | ||
print("Performing sentiment analysis on: " + sentence) | ||
|
||
# Open the default KV store | ||
store = key_value.open_default() | ||
|
||
# Check if the sentence is already in the KV store | ||
if store.exists(sentence) is False: | ||
result=llm.infer("llama2-chat", PROMPT+sentence).text | ||
print("Raw result: " + result) | ||
sentiment = get_sentiment_from_sentence(result) | ||
print("Storing result in the KV store") | ||
store.set(sentence, str.encode(sentiment)) | ||
else: | ||
sentiment = store.get(sentence).decode() | ||
print("Found a cached result") | ||
|
||
response_body=json.dumps({"sentiment": sentiment}) | ||
|
||
return Response(200, | ||
{"content-type": "application/json"}, | ||
bytes(response_body, "utf-8")) | ||
|
||
def get_sentiment_from_sentence(sentence) -> str: | ||
words = sentence.lower().split() | ||
|
@@ -779,17 +784,9 @@ Directory containing the files to serve [assets]: assets | |
|
||
``` | ||
|
||
We create an `assets` directory where we can store files to serve statically (see the `spin.toml` file for more configuration information): | ||
|
||
<!-- @selectiveCpy --> | ||
|
||
```bash | ||
$ mkdir assets | ||
``` | ||
|
||
### Add the Front-End | ||
### Add the Front-End | ||
|
||
We can add a webpage that asks the user for some text and does the sentiment analysis on it. In your assets folder, create two files `dynamic.js` and `index.html`. | ||
We can add a webpage that asks the user for some text and does the sentiment analysis on it. In your assets folder, create two files `dynamic.js` and `index.html`. | ||
|
||
Here's the code snippet for `index.html` | ||
|
||
|
@@ -863,7 +860,7 @@ Here's the code snippet for `index.html` | |
</html> | ||
``` | ||
|
||
Here's the code snippet for `dynamic.js` | ||
Here's the code snippet for `dynamic.js` | ||
|
||
```javascript | ||
// Listen for the Enter key being pressed | ||
|
@@ -975,7 +972,7 @@ For this, we install use a pre-made template by pointing to the templates GitHub | |
$ spin templates install --git https://github.com/fermyon/spin-kv-explorer | ||
``` | ||
|
||
Then, we again use `spin add` to add the new component. We will name the component `kv-explorer`): | ||
Then, we again use `spin add` to add the new component. We will name the component `kv-explorer`): | ||
|
||
<!-- @selectiveCpy --> | ||
|
||
|
@@ -987,27 +984,31 @@ $ spin add kv-explorer -t kv-explorer | |
|
||
As shown below, the Spin framework has done all of the scaffolding for us: | ||
|
||
{{ tabs "sdk-type" }} | ||
|
||
{{ startTab "Rust"}} | ||
|
||
<!-- @nocpy --> | ||
|
||
```toml | ||
spin_manifest_version = 2 | ||
|
||
[application] | ||
name = "sentiment-analysis-rust" | ||
name = "sentiment-analysis" | ||
version = "0.1.0" | ||
authors = ["Your Name <[email protected]>"] | ||
description = "A sentiment analysis API that demonstrates using LLM inferencing and KV stores together" | ||
|
||
[[trigger.http]] | ||
route = "/api/..." | ||
component = "sentiment-analysis-rust" | ||
component = "sentiment-analysis" | ||
|
||
[component.sentiment-analysis-rust] | ||
source = "target/wasm32-wasip1/release/sentiment_analysis_rust.wasm" | ||
[component.sentiment-analysis] | ||
source = "target/wasm32-wasip1/release/sentiment_analysis.wasm" | ||
allow_outbound_hosts = [] | ||
ai_models = ["llama2-chat"] | ||
key_value_stores = ["default"] | ||
[component.sentiment-analysis-rust.build] | ||
[component.sentiment-analysis.build] | ||
command = "cargo build --target wasm32-wasip1 --release" | ||
watch = ["src/**/*.rs", "Cargo.toml"] | ||
|
||
|
@@ -1016,19 +1017,77 @@ route = "/..." | |
component = "ui" | ||
|
||
[component.ui] | ||
source = { url = "https://github.com/fermyon/spin-fileserver/releases/download/v0.1.0/spin_static_fs.wasm", digest = "sha256:96c76d9af86420b39eb6cd7be5550e3cb5d4cc4de572ce0fd1f6a29471536cb4" } | ||
source = { url = "https://github.com/fermyon/spin-fileserver/releases/download/v0.3.0/spin_static_fs.wasm", digest = "sha256:ef88708817e107bf49985c7cefe4dd1f199bf26f6727819183d5c996baa3d148" } | ||
files = [{ source = "assets", destination = "/" }] | ||
|
||
[[trigger.http]] | ||
route = "/internal/kv-explorer/..." | ||
component = "kvv2" | ||
|
||
[component.kv-explorer] | ||
source = { url = "https://github.com/fermyon/spin-kv-explorer/releases/download/v0.6.0/spin-kv-explorer.wasm", digest = "sha256:38110bc277a393cdfb1a885a0fd56923d47314b2086399d1e3bbcb6daa1f04ad" } | ||
source = { url = "https://github.com/fermyon/spin-kv-explorer/releases/download/v0.10.0/spin-kv-explorer.wasm", digest = "sha256:65bc286f8315746d1beecd2430e178f539fa487ebf6520099daae09a35dbce1d" } | ||
allowed_outbound_hosts = ["redis://*:*", "mysql://*:*", "postgres://*:*"] | ||
# add or remove stores you want to explore here | ||
key_value_stores = ["default"] | ||
``` | ||
|
||
{{ blockEnd }} | ||
|
||
{{ startTab "Python" }} | ||
|
||
<!-- @nocpy --> | ||
|
||
```toml | ||
spin_manifest_version = 2 | ||
|
||
[application] | ||
authors = ["Your Name <[email protected]>"] | ||
description = "A sentiment analysis API that demonstrates using LLM inferencing and KV stores together" | ||
name = "sentiment-analysis" | ||
version = "0.1.0" | ||
|
||
[[trigger.http]] | ||
route = "/api/..." | ||
component = "sentiment-analysis" | ||
|
||
[component.sentiment-analysis] | ||
source = "app.wasm" | ||
ai_models = ["llama2-chat"] | ||
key_value_stores = ["default"] | ||
[component.sentiment-analysis.build] | ||
command = "componentize-py -w spin-http componentize app -o app.wasm" | ||
watch = ["*.py", "requirements.txt"] | ||
|
||
[[trigger.http]] | ||
component = "kv-explorer" | ||
route = "/internal/kv-explorer/..." | ||
|
||
[component.kv-explorer] | ||
source = { url = "https://github.com/fermyon/spin-kv-explorer/releases/download/v0.10.0/spin-kv-explorer.wasm", digest = "sha256:65bc286f8315746d1beecd2430e178f539fa487ebf6520099daae09a35dbce1d" } | ||
allowed_outbound_hosts = ["redis://*:*", "mysql://*:*", "postgres://*:*"] | ||
# add or remove stores you want to explore here | ||
key_value_stores = ["default"] | ||
|
||
[component.kv-explorer.variables] | ||
kv_credentials = "{{ kv_explorer_user }}:{{ kv_explorer_password }}" | ||
|
||
[variables] | ||
kv_explorer_user = { required = true } | ||
kv_explorer_password = { required = true } | ||
|
||
[[trigger.http]] | ||
route = "/..." | ||
component = "ui" | ||
|
||
[component.ui] | ||
source = { url = "https://github.com/fermyon/spin-fileserver/releases/download/v0.3.0/spin_static_fs.wasm", digest = "sha256:ef88708817e107bf49985c7cefe4dd1f199bf26f6727819183d5c996baa3d148" } | ||
files = [{ source = "assets", destination = "/" }] | ||
``` | ||
|
||
{{ blockEnd }} | ||
|
||
{{ blockEnd }} | ||
|
||
### Building and Deploying Your Spin Application | ||
|
||
**Note:** Running inferencing on localhost (your CPU) is not as optimal as deploying to Fermyon's Serverless AI (where inferencing is performed by high-powered GPUs). You can skip this `spin build --up` step and move straight to `spin cloud deploy` if you: | ||
|
@@ -1038,12 +1097,33 @@ key_value_stores = ["default"] | |
|
||
Now, let's build and run our Spin Application locally. (**Note:** If you are following along with the TypeScript/JavaScript example, you will first need to run `npm install`. Otherwise, please continue to the following `spin` command.) | ||
|
||
{{ tabs "sdk-type" }} | ||
|
||
{{ startTab "Rust" }} | ||
|
||
<!-- @selectiveCpy --> | ||
|
||
```bash | ||
$ spin build --up | ||
``` | ||
|
||
{{ blockEnd }} | ||
|
||
{{ startTab "Python" }} | ||
|
||
<!-- @selectiveCpy --> | ||
|
||
```bash | ||
$ python3 -m venv venv | ||
$ source venv/bin/activate | ||
$ pip3 install -r requirements.txt | ||
$ spin build --up | ||
``` | ||
|
||
{{ blockEnd }} | ||
|
||
{{ blockEnd }} | ||
|
||
### Test Locally | ||
|
||
<!-- @selectiveCpy --> | ||
|
@@ -1057,7 +1137,7 @@ $ curl -vXPOST 'localhost:3000/api/sentiment-analysis' -H'Content-Type: applicat | |
|
||
### Deploy to Fermyon Cloud | ||
|
||
Deploying to the Fermyon Cloud is one simple command. If you have not logged into your Fermyon Cloud account already, the CLI will prompt you to login. Follow the instructions to complete the authorization process. | ||
Deploying to the Fermyon Cloud is one simple command. If you have not logged into your Fermyon Cloud account already, the CLI will prompt you to login. Follow the instructions to complete the authorization process. | ||
|
||
<!-- @selectiveCpy --> | ||
|
||
|