Skip to content

Latest commit

 

History

History
181 lines (138 loc) · 4.81 KB

File metadata and controls

181 lines (138 loc) · 4.81 KB
comments difficulty edit_url rating source tags
true
Easy
1282
Biweekly Contest 75 Q1
Bit Manipulation

中文文档

Description

A bit flip of a number x is choosing a bit in the binary representation of x and flipping it from either 0 to 1 or 1 to 0.

  • For example, for x = 7, the binary representation is 111 and we may choose any bit (including any leading zeros not shown) and flip it. We can flip the first bit from the right to get 110, flip the second bit from the right to get 101, flip the fifth bit from the right (a leading zero) to get 10111, etc.

Given two integers start and goal, return the minimum number of bit flips to convert start to goal.

 

Example 1:

Input: start = 10, goal = 7
Output: 3
Explanation: The binary representation of 10 and 7 are 1010 and 0111 respectively. We can convert 10 to 7 in 3 steps:
- Flip the first bit from the right: 1010 -> 1011.
- Flip the third bit from the right: 1011 -> 1111.
- Flip the fourth bit from the right: 1111 -> 0111.
It can be shown we cannot convert 10 to 7 in less than 3 steps. Hence, we return 3.

Example 2:

Input: start = 3, goal = 4
Output: 3
Explanation: The binary representation of 3 and 4 are 011 and 100 respectively. We can convert 3 to 4 in 3 steps:
- Flip the first bit from the right: 011 -> 010.
- Flip the second bit from the right: 010 -> 000.
- Flip the third bit from the right: 000 -> 100.
It can be shown we cannot convert 3 to 4 in less than 3 steps. Hence, we return 3.

 

Constraints:

  • 0 <= start, goal <= 109

 

Note: This question is the same as 461: Hamming Distance.

Solutions

Solution 1: Bit Manipulation

According to the problem description, we only need to count the number of 1s in the binary representation of $\textit{start} \oplus \textit{goal}$.

The time complexity is $O(\log n)$, where $n$ is the size of the integers in the problem. The space complexity is $O(1)$.

Python3

class Solution:
    def minBitFlips(self, start: int, goal: int) -> int:
        return (start ^ goal).bit_count()

Java

class Solution {
    public int minBitFlips(int start, int goal) {
        return Integer.bitCount(start ^ goal);
    }
}

C++

class Solution {
public:
    int minBitFlips(int start, int goal) {
        return __builtin_popcount(start ^ goal);
    }
};

Go

func minBitFlips(start int, goal int) int {
	return bits.OnesCount(uint(start ^ goal))
}

TypeScript

function minBitFlips(start: number, goal: number): number {
    return bitCount(start ^ goal);
}

function bitCount(i: number): number {
    i = i - ((i >>> 1) & 0x55555555);
    i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
    i = (i + (i >>> 4)) & 0x0f0f0f0f;
    i = i + (i >>> 8);
    i = i + (i >>> 16);
    return i & 0x3f;
}

Rust

impl Solution {
    pub fn min_bit_flips(start: i32, goal: i32) -> i32 {
        (start ^ goal).count_ones() as i32
    }
}

JavaScript

/**
 * @param {number} start
 * @param {number} goal
 * @return {number}
 */
var minBitFlips = function (start, goal) {
    return bitCount(start ^ goal);
};

function bitCount(i) {
    i = i - ((i >>> 1) & 0x55555555);
    i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
    i = (i + (i >>> 4)) & 0x0f0f0f0f;
    i = i + (i >>> 8);
    i = i + (i >>> 16);
    return i & 0x3f;
}

C

int minBitFlips(int start, int goal) {
    int x = start ^ goal;
    int ans = 0;
    while (x) {
        ans += (x & 1);
        x >>= 1;
    }
    return ans;
}