Skip to content

Latest commit

 

History

History
170 lines (136 loc) · 4.52 KB

File metadata and controls

170 lines (136 loc) · 4.52 KB
comments difficulty edit_url rating source tags
true
Medium
1275
Weekly Contest 277 Q3
Array
Hash Table
Counting

中文文档

Description

You are given an integer array nums. A number x is lonely when it appears only once, and no adjacent numbers (i.e. x + 1 and x - 1) appear in the array.

Return all lonely numbers in nums. You may return the answer in any order.

 

Example 1:

Input: nums = [10,6,5,8]
Output: [10,8]
Explanation: 
- 10 is a lonely number since it appears exactly once and 9 and 11 does not appear in nums.
- 8 is a lonely number since it appears exactly once and 7 and 9 does not appear in nums.
- 5 is not a lonely number since 6 appears in nums and vice versa.
Hence, the lonely numbers in nums are [10, 8].
Note that [8, 10] may also be returned.

Example 2:

Input: nums = [1,3,5,3]
Output: [1,5]
Explanation: 
- 1 is a lonely number since it appears exactly once and 0 and 2 does not appear in nums.
- 5 is a lonely number since it appears exactly once and 4 and 6 does not appear in nums.
- 3 is not a lonely number since it appears twice.
Hence, the lonely numbers in nums are [1, 5].
Note that [5, 1] may also be returned.

 

Constraints:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] <= 106

Solutions

Solution 1: Hash Table

We use a hash table $\textit{cnt}$ to record the occurrence count of each number. Then, we iterate through the hash table. For each number and its occurrence count $(x, v)$, if $v = 1$ and $\textit{cnt}[x - 1] = 0$ and $\textit{cnt}[x + 1] = 0$, then $x$ is a lonely number, and we add it to the answer array.

After finishing the iteration, we return the answer array.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $\textit{nums}$.

Python3

class Solution:
    def findLonely(self, nums: List[int]) -> List[int]:
        cnt = Counter(nums)
        return [
            x for x, v in cnt.items() if v == 1 and cnt[x - 1] == 0 and cnt[x + 1] == 0
        ]

Java

class Solution {
    public List<Integer> findLonely(int[] nums) {
        Map<Integer, Integer> cnt = new HashMap<>();
        for (int x : nums) {
            cnt.merge(x, 1, Integer::sum);
        }
        List<Integer> ans = new ArrayList<>();
        for (var e : cnt.entrySet()) {
            int x = e.getKey(), v = e.getValue();
            if (v == 1 && !cnt.containsKey(x - 1) && !cnt.containsKey(x + 1)) {
                ans.add(x);
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> findLonely(vector<int>& nums) {
        unordered_map<int, int> cnt;
        for (int x : nums) {
            cnt[x]++;
        }
        vector<int> ans;
        for (auto& [x, v] : cnt) {
            if (v == 1 && !cnt.contains(x - 1) && !cnt.contains(x + 1)) {
                ans.push_back(x);
            }
        }
        return ans;
    }
};

Go

func findLonely(nums []int) (ans []int) {
	cnt := map[int]int{}
	for _, x := range nums {
		cnt[x]++
	}
	for x, v := range cnt {
		if v == 1 && cnt[x-1] == 0 && cnt[x+1] == 0 {
			ans = append(ans, x)
		}
	}
	return
}

TypeScript

function findLonely(nums: number[]): number[] {
    const cnt: Map<number, number> = new Map();
    for (const x of nums) {
        cnt.set(x, (cnt.get(x) || 0) + 1);
    }
    const ans: number[] = [];
    for (const [x, v] of cnt) {
        if (v === 1 && !cnt.has(x - 1) && !cnt.has(x + 1)) {
            ans.push(x);
        }
    }
    return ans;
}