Skip to content

Pytorch implementation of SinMPI (SIGGRAPH Asia 2023)

License

Notifications You must be signed in to change notification settings

TrickyGo/SinMPI

Repository files navigation

Welcome to SinMPI!

"SinMPI: Novel View Synthesis from a Single Image with Expanded Multiplane Images" (SIGGRAPH Asia 2023).

Quick demo

1. Prepare

(1) Create a new conda environment specified in requirements.txt.

(2) Download pretrained weights of depth-aware inpainter ecweights and put them into 'warpback/ecweights/xxx.pth'.

2. Run demo

sh scripts/train_all.sh

This demo converts 'test_images/Syndney.jpg' to an expanded MPI and renders novel views as in 'ckpts/Exp-Syndney-new/MPI_rendered_views.mp4'.

What happens when running the demo?

1. Outpaint the input image

In the above demo, we specify 'test_images/Syndney.jpg'

as the input image, then we continuously outpaint the input image:

CUDA_VISIBLE_DEVICES=$cuda python outpaint_rgbd.py \
    --width $width \
    --height $height \
    --ckpt_path $ckpt_path \
    --img_path $img_path \
    --extrapolate_times $extrapolate_times

Then we get the outpainted image and its depth estimated by a monocular depth estimator (DPT):

2. Finetune Depth-aware Inpainter and create Pseudo-multi-view images

CUDA_VISIBLE_DEVICES=$cuda python train_inpainting.py \
     --width $width \
     --height $height \
     --ckpt_path $ckpt_path \
     --img_path $img_path \
     --num_epochs 10  \
     --extrapolate_times $extrapolate_times \
     --batch_size 1  #--load_warp_pairs --debugging 

3. Optimizing the expanded MPI

CUDA_VISIBLE_DEVICES=$cuda python train_mpi.py \
    --width $width \
    --height $height \
    --ckpt_path $ckpt_path \
    --img_path $img_path \
    --num_epochs 10 \
    --extrapolate_times $extrapolate_times \
    --batch_size 1 #--debugging #--resume

After optimization, we render novel views:

Toward Better quality and robustness

Notice the above demo is designed for fast illustration (FPS is low). For better quality:

Pesudo-multi-views should be more and cover more areas.

Increasing the sample rate and sample areas helps to optimize MPI with better quality. To add training and rendering view trajectories, modify 'dataloaders/single_img_data.py'.

More training epochs are needed.

Cite our paper

If you find our work helpful, please cite our paper. Thank you!

ACM Reference Format:

Guo Pu, Peng-Shuai Wang, and Zhouhui Lian. 2023. SinMPI: Novel View
Synthesis from a Single Image with Expanded Multiplane Images. In SIGGRAPH Asia 2023 Conference Papers (SA Conference Papers '23), December
12–15, 2023, Sydney, NSW, Australia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3610548.3618155

About

Pytorch implementation of SinMPI (SIGGRAPH Asia 2023)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published