-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2 from philwilkes/voxel
Voxel - minor conflicts resolved.
- Loading branch information
Showing
2 changed files
with
43 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -25,15 +25,17 @@ | |
__email__ = "[email protected]" | ||
__status__ = "Development" | ||
|
||
|
||
import datetime | ||
import numpy as np | ||
import datetime | ||
import pandas as pd | ||
import struct | ||
from sklearn.neighbors import NearestNeighbors | ||
from ..utility.shortpath import (array_to_graph, extract_path_info) | ||
|
||
|
||
def detect_main_pathways(point_cloud, k_retrace, knn, nbrs_threshold, | ||
verbose=False): | ||
|
||
def detect_main_pathways(point_cloud, k_retrace, knn, nbrs_threshold, voxel=.1, verbose=False): | ||
|
||
|
||
""" | ||
Detects the main pathways of an unordered 3D point cloud. Set as true | ||
|
@@ -80,19 +82,38 @@ def detect_main_pathways(point_cloud, k_retrace, knn, nbrs_threshold, | |
assert point_cloud.shape[1] == 3, "point_cloud must be a 3D point cloud.\ | ||
Make sure it has the shape n_points x 3 (x, y, z)." | ||
|
||
# voxelise the data | ||
point_cloud_v = pd.DataFrame(point_cloud, columns=['x', 'y', 'z']) | ||
point_cloud_v.loc[:, 'xx'] = (point_cloud_v.x // voxel) * voxel | ||
point_cloud_v.loc[:, 'yy'] = (point_cloud_v.y // voxel) * voxel | ||
point_cloud_v.loc[:, 'zz'] = (point_cloud_v.z // voxel) * voxel | ||
|
||
point_cloud_v.loc[:, 'xxb'] = point_cloud_v.xx.apply(lambda x: struct.pack('f', x )) | ||
point_cloud_v.loc[:, 'yyb'] = point_cloud_v.yy.apply(lambda x: struct.pack('f', x )) | ||
point_cloud_v.loc[:, 'zzb'] = point_cloud_v.zz.apply(lambda x: struct.pack('f', x )) | ||
point_cloud_v.loc[:, 'I'] = point_cloud_v.xxb + point_cloud_v.yyb + point_cloud_v.zzb | ||
|
||
point_cloud_w = point_cloud_v.groupby(['xx', 'yy', 'zz']).size().reset_index() | ||
point_cloud_w.loc[:, 'xxb'] = point_cloud_w.xx.apply(lambda x: struct.pack('f', x )) | ||
point_cloud_w.loc[:, 'yyb'] = point_cloud_w.yy.apply(lambda x: struct.pack('f', x )) | ||
point_cloud_w.loc[:, 'zzb'] = point_cloud_w.zz.apply(lambda x: struct.pack('f', x )) | ||
point_cloud_w.loc[:, 'I'] = point_cloud_w.xxb + point_cloud_w.yyb + point_cloud_w.zzb | ||
|
||
# Getting root index (base_id) from point cloud. | ||
base_id = np.argmin(point_cloud[:, 2]) | ||
base_id = point_cloud_w.zz.idxmin() | ||
|
||
# Generating graph from point cloud and extracting shortest path | ||
# information. | ||
|
||
if verbose: | ||
print(str(datetime.datetime.now()) + ' | >>> generating graph from \ | ||
point cloud and extracting shortest path information') | ||
G = array_to_graph(point_cloud, base_id, 3, 100, 0.05, 0.02) | ||
G = array_to_graph(point_cloud_w[['xx', 'yy', 'zz']], base_id, 3, 100, 0.05, 0.02) | ||
|
||
nodes_ids, D, path_list = extract_path_info(G, base_id, | ||
return_path=True) | ||
# Obtaining nodes coordinates from shortest path information. | ||
nodes = point_cloud[nodes_ids] | ||
nodes = point_cloud_w.loc[nodes_ids] | ||
# Converting list of shortest path distances to array. | ||
D = np.asarray(D) | ||
|
||
|
@@ -111,8 +132,8 @@ def detect_main_pathways(point_cloud, k_retrace, knn, nbrs_threshold, | |
|
||
# Generating array of all indices from 'arr' and all indices to process | ||
# 'idx'. | ||
idx_base = np.arange(point_cloud.shape[0], dtype=int) | ||
idx = np.arange(point_cloud.shape[0], dtype=int) | ||
idx_base = np.arange(point_cloud_w.shape[0], dtype=int) | ||
idx = np.arange(point_cloud_w.shape[0], dtype=int) | ||
|
||
# Initializing NearestNeighbors search and searching for all 'knn' | ||
# neighboring points arround each point in 'arr'. | ||
|
@@ -121,8 +142,8 @@ def detect_main_pathways(point_cloud, k_retrace, knn, nbrs_threshold, | |
NearestNeighbors search and searching for all knn neighboring points \ | ||
arround each point in arr') | ||
nbrs = NearestNeighbors(n_neighbors=knn, metric='euclidean', | ||
leaf_size=15, n_jobs=-1).fit(point_cloud) | ||
distances, indices = nbrs.kneighbors(point_cloud) | ||
leaf_size=15, n_jobs=-1).fit(point_cloud_w[['xx', 'yy', 'zz']]) | ||
distances, indices = nbrs.kneighbors(point_cloud_w[['xx', 'yy', 'zz']]) | ||
indices = indices.astype(int) | ||
|
||
# Initializing variables for current ids being processed (current_idx) | ||
|
@@ -251,14 +272,14 @@ def detect_main_pathways(point_cloud, k_retrace, knn, nbrs_threshold, | |
processed_idx = np.unique(processed_idx).astype(int) | ||
|
||
# Generating list of remaining proints to process. | ||
idx = idx_base[np.in1d(idx_base, processed_idx, invert=True)] | ||
|
||
# Generating final path mask and setting processed indices as True. | ||
path_mask = np.zeros(point_cloud.shape[0], dtype=bool) | ||
path_mask = np.zeros(point_cloud_w.shape[0], dtype=bool) | ||
path_mask[processed_idx] = True | ||
|
||
# identifying points in stem voxels and attributing True | ||
path_mask_all = np.zeros(point_cloud_v.shape[0], dtype=bool) | ||
path_mask_all[point_cloud_v[point_cloud_v.I.isin(point_cloud_w.loc[path_mask].I)].index] = True | ||
|
||
return path_mask | ||
|
||
return path_mask_all | ||
|
||
def get_base(point_cloud, base_height): | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters