by Wladimir Silva
This work describes a method to prepare the quantum state of the Heisenberg spin-1/2 Hamiltonian for the Kagome Lattice in an IBM 16 qubit quantum computer with a fidelity below 1% of the ground state computed via a classical Eigen-solver. Furthermore, this solution has a very high noise tolerance (or overall success rate above 98%). With industrious care taken to deal with the persistent noise inherent to current quantum computers; we show that our solution, when run, multiple times achieves a very high probability of success and high fidelity. We take this work a step further by including efficient scalability or the ability to run on any qubit size quantum computer. The platform of choice for this experiment: The IBM 16 qubit transmon processor Guadalupe using the Variational Quantum Eigensolver (VQE).
See details at https://arxiv.org/abs/2304.04516