Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add example testing TI in emg #841

Draft
wants to merge 3 commits into
base: develop
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
247 changes: 247 additions & 0 deletions examples/xx_add_ti_to_emg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,247 @@
""" Script for reconsidering TI recovery in the EMG model


"""


from typing import (
Any,
Dict,
List,
Optional,
)

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from floris import FlorisModel, WindRose
from floris.layout_visualization import (
plot_turbine_labels,
plot_turbine_points,
plot_waking_directions,
)


# Tuning parameters for new ti model
atmospheric_ti_gain = 0.0 # note default: 0.0
wake_expansion_rates = [0.023, 0.008] # note default: [0.023, 0.008]
breakpoints_D = [10] # Node default: [10]

# Layout parameters
n_col = 6 # Number of columns
n_t = 10 # Number of turbines per column
dist_c = 7.0 # Distance between columns
dist_t = 3.0 # Distance between turbines

# Atmospheric parameters
wind_directions = np.arange(250, 291, 1.0)
wind_speeds = np.array([8.0, 9.0])

# Parameters
D = 126.0


def nested_get(dic: Dict[str, Any], keys: List[str]) -> Any:
"""Get a value from a nested dictionary using a list of keys.
Based on: stackoverflow.com/questions/14692690/access-nested-dictionary-items-via-a-list-of-keys

Args:
dic (Dict[str, Any]): The dictionary to get the value from.
keys (List[str]): A list of keys to traverse the dictionary.

Returns:
Any: The value at the end of the key traversal.
"""
for key in keys:
dic = dic[key]
return dic


def nested_set(dic: Dict[str, Any], keys: List[str], value: Any, idx: Optional[int] = None) -> None:
"""Set a value in a nested dictionary using a list of keys.
Based on: stackoverflow.com/questions/14692690/access-nested-dictionary-items-via-a-list-of-keys

Args:
dic (Dict[str, Any]): The dictionary to set the value in.
keys (List[str]): A list of keys to traverse the dictionary.
value (Any): The value to set.
idx (Optional[int], optional): If the value is an list, the index to change.
Defaults to None.
"""
dic_in = dic.copy()

for key in keys[:-1]:
dic = dic.setdefault(key, {})
if idx is None:
# Parameter is a scaler, set directly
dic[keys[-1]] = value
else:
# Parameter is a list, need to first get the list, change the values at idx

# # Get the underlying list
par_list = nested_get(dic_in, keys)
par_list[idx] = value
dic[keys[-1]] = par_list


def set_fi_param(
fm_in: FlorisModel, param: List[str], value: Any, param_idx: Optional[int] = None
) -> FlorisModel:
"""Set a parameter in a FlorisInterface object.

Args:
fi_in (FlorisInterface): The FlorisInterface object to modify.
param (List[str]): A list of keys to traverse the FlorisInterface dictionary.
value (Any): The value to set.
idx (Optional[int], optional): The index to set the value at. Defaults to None.

Returns:
FlorisInterface: The modified FlorisInterface object.
"""
fm_dict_mod = fm_in.core.as_dict()
nested_set(fm_dict_mod, param, value, param_idx)
return FlorisModel(fm_dict_mod)


# Initialize FLORIS with the given input file.
# The Floris class is the entry point for most usage.
fmodel_emg = FlorisModel("inputs/emgauss.yaml")

# Get a copy for the ti-enabled case
fmodel_emg_ti = fmodel_emg.copy()

# Get the dictionary
# fm_dict = fmodel_emg.core.as_dict()
# print(fm_dict['wake']['wake_velocity_parameters']['empirical_gauss'].keys())
# Update the parameters
fmodel_emg_ti = set_fi_param(
fm_in=fmodel_emg_ti,
param=["wake", "wake_velocity_parameters", "empirical_gauss", "wake_expansion_rates"],
value=wake_expansion_rates[0],
param_idx=0,
)
fmodel_emg_ti = set_fi_param(
fm_in=fmodel_emg_ti,
param=["wake", "wake_velocity_parameters", "empirical_gauss", "wake_expansion_rates"],
value=wake_expansion_rates[1],
param_idx=1,
)
fmodel_emg_ti = set_fi_param(
fm_in=fmodel_emg_ti,
param=["wake", "wake_velocity_parameters", "empirical_gauss", "breakpoints_D"],
value=breakpoints_D[0],
param_idx=0,
)
fmodel_emg_ti = set_fi_param(
fm_in=fmodel_emg_ti,
param=["wake", "wake_turbulence_parameters", "wake_induced_mixing", "atmospheric_ti_gain"],
value=atmospheric_ti_gain,
)


# Use a nested list comprehension to create the layout_x and layout_y arrays
layout_x = [dist_c * D * i for i in range(n_col) for j in range(n_t)]
layout_y = [dist_t * D * j for i in range(n_col) for j in range(n_t)]

# Set the wind farm layout using the set method
fmodel_emg.set(layout_x=layout_x, layout_y=layout_y)
fmodel_emg_ti.set(layout_x=layout_x, layout_y=layout_y)

# Show the layout of the farm
fig, ax = plt.subplots()
plot_turbine_points(fmodel_emg, ax)
plot_turbine_labels(fmodel_emg, ax)
plot_waking_directions(fmodel_emg, ax, limit_dist_D=dist_c * 1.01)

# Set up a wind rose input
wind_rose = WindRose(
wind_directions=wind_directions,
wind_speeds=wind_speeds,
ti_table=0.06,
)
fmodel_emg.set(wind_data=wind_rose)
fmodel_emg_ti.set(wind_data=wind_rose)

# Run the FLORIS model
fmodel_emg.run()
fmodel_emg_ti.run()

# Get the power from the turbines
turbine_power_emg = fmodel_emg.get_turbine_powers()
turbine_power_emg_ti = fmodel_emg_ti.get_turbine_powers()

# Currently the matrices have n_t * n_col columns, each corresponding to a turbine
# average the columns according to the column, this means averaging every n_t columns
turbine_power_emg = turbine_power_emg.reshape(
turbine_power_emg.shape[0]*turbine_power_emg.shape[1], -1, n_t
)
turbine_power_emg = np.mean(turbine_power_emg, axis=2)
turbine_power_emg_ti = turbine_power_emg_ti.reshape(
turbine_power_emg_ti.shape[0]*turbine_power_emg_ti.shape[1], -1, n_t
)
turbine_power_emg_ti = np.mean(turbine_power_emg_ti, axis=2)


# Now determine the gridded wind speeds and directions
wd_grid, ws_grid = np.meshgrid(wind_directions, wind_speeds, indexing="ij")

wd_flat = wd_grid.flatten()
ws_flat = ws_grid.flatten()

# Now build up a dataframe
df_power_emg = pd.DataFrame(
data=turbine_power_emg,
)

# Add additional columns
df_power_emg["wind_speed"] = ws_flat
df_power_emg["wind_direction"] = wd_flat
df_power_emg["model"] = "emg"

# Repeat for the ti-enabled case
df_power_emg_ti = pd.DataFrame(
data=turbine_power_emg_ti,
)

# Add additional columns
df_power_emg_ti["wind_speed"] = ws_flat
df_power_emg_ti["wind_direction"] = wd_flat
df_power_emg_ti["model"] = "emg_ti"

# Concatenate the two dataframes
df = pd.concat([df_power_emg, df_power_emg_ti], axis=0)

# Now make a figure comparing the two models
num_ws = len(wind_speeds)
fig, axarr = plt.subplots(num_ws, n_col - 1, figsize=(10, 10), sharex=True, sharey=True)

for i, ws in enumerate(wind_speeds):
for j in range(n_col - 1):
ax = axarr[i, j]
# Get the data for the current wind speed
df_ws = df[df["wind_speed"] == ws]

# Get the data for the current column
df_ws["ratio"] = df_ws[j + 1] / df_ws[0]

# Now compare the ratios against wind direction for the emg and emg_ti models
df_ws_emg = df_ws[df_ws["model"] == "emg"]
df_ws_emg_ti = df_ws[df_ws["model"] == "emg_ti"]

ax.plot(df_ws_emg["wind_direction"], df_ws_emg["ratio"], label="emg")
ax.plot(df_ws_emg_ti["wind_direction"], df_ws_emg_ti["ratio"], label="emg_ti")

ax.set_xlabel("Wind direction")
ax.grid(True)

if j == 0:
ax.set_ylabel(f"Power ratio for wind speed {ws}")

if i == 0:
ax.set_title(f"Column {j + 1} of {n_col}")

if i == 0 and j == 0:
ax.legend()

plt.show()
Loading