Skip to content

Commit

Permalink
Expanded capabilities for heterogeneity (#902)
Browse files Browse the repository at this point in the history
  • Loading branch information
paulf81 authored May 14, 2024
1 parent a313286 commit 0c437c4
Show file tree
Hide file tree
Showing 14 changed files with 1,440 additions and 285 deletions.
1 change: 1 addition & 0 deletions docs/_toc.yml
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ parts:
- file: intro_concepts
- file: advanced_concepts
- file: wind_data_user
- file: heterogeneous_map
- file: floating_wind_turbine
- file: turbine_interaction
- file: operation_models_user
Expand Down
252 changes: 252 additions & 0 deletions docs/heterogeneous_map.ipynb

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
import numpy as np

from floris import FlorisModel, TimeSeries
from floris.flow_visualization import visualize_cut_plane
from floris.flow_visualization import visualize_heterogeneous_cut_plane
from floris.layout_visualization import plot_turbine_labels


Expand Down Expand Up @@ -65,15 +65,20 @@
x_resolution=200, y_resolution=100, height=90.0
)

# Plot the horizontal plane
# Plot the horizontal plane using the visualize_heterogeneous_cut_plane.
# Note that this function is not very different than the standard
# visualize_cut_plane except that it accepts the fmodel object in order to
# visualize the boundary of the heterogeneous inflow region.
fig, ax = plt.subplots()
visualize_cut_plane(
visualize_heterogeneous_cut_plane(
horizontal_plane,
fmodel=fmodel,
ax=ax,
title="Horizontal plane at hub height",
color_bar=True,
label_contours=True,
)
plot_turbine_labels(fmodel, ax)
ax.legend()

plt.show()
Original file line number Diff line number Diff line change
@@ -1,16 +1,14 @@
"""Example: Heterogeneous Inflow for multiple conditions
"""Example: Heterogeneous Inflow using wind data
When multiple cases are considered, the heterogeneous inflow conditions can be defined in two ways:
1. Passing heterogeneous_inflow_config to the set method, with P points,
and speedups of size n_findex X P
2. Assigning heterogeneous_inflow_config_by_wd to the wind_data object
used to drive FLORIS. This object includes
n_wd wind_directions, and speedups is of size n_wd X P. When applied
to set, the heterogeneous_inflow_config
is automatically generated by using the nearest wind direction
defined in heterogeneous_inflow_config_by_wd
for each findex.
and speed_multipliers of size n_findex X P
2. More conveniently, building a HeterogeneousMap object that defines the speed_multipliers as a
function of wind direction and/or wind speed and passing that to a WindData object. When
the WindData object is passed to the set method, the heterogeneous_inflow_config is
automatically generated for each findex by finding the nearest wind direction and/or wind
speed in the HeterogeneousMap object.
This example:
Expand All @@ -23,7 +21,11 @@
import matplotlib.pyplot as plt
import numpy as np

from floris import FlorisModel, TimeSeries
from floris import (
FlorisModel,
HeterogeneousMap,
TimeSeries,
)


# Initialize FlorisModel
Expand All @@ -34,7 +36,6 @@

# Define a TimeSeries object with 4 wind directions and constant wind speed
# and turbulence intensity

time_series = TimeSeries(
wind_directions=np.array([269.0, 270.0, 271.0, 282.0]),
wind_speeds=8.0,
Expand All @@ -51,17 +52,17 @@

# Assume the speed-ups are defined such that they are the same 265-275 degrees and 275-285 degrees

# If defining heterogeneous_inflow_config directly, then the speedups are of size n_findex X P
# where the first 3 rows are identical, and the last row is different
speed_ups = [
# If defining heterogeneous_inflow_config directly, then the speed_multipliers are of size
# n_findex x P, where the first 3 rows are identical and the last row is different
speed_multipliers = [
[1.0, 1.25, 1.0, 1.25],
[1.0, 1.25, 1.0, 1.25],
[1.0, 1.25, 1.0, 1.25],
[1.0, 1.35, 1.0, 1.35],
]

heterogeneous_inflow_config = {
"speed_multipliers": speed_ups,
"speed_multipliers": speed_multipliers,
"x": x_locs,
"y": y_locs,
}
Expand All @@ -75,26 +76,45 @@
# Get the power output of the turbines
turbine_powers = fmodel.get_turbine_powers() / 1000.0

# Now repeat using the wind_data object and heterogeneous_inflow_config_by_wd
# First, create the speedups for the two wind directions
speed_ups = [[1.0, 1.25, 1.0, 1.25], [1.0, 1.35, 1.0, 1.35]]
# Now repeat using the wind_data object and HeterogeneousMap object
# First, create the speed multipliers for the two wind directions
speed_multipliers = [[1.0, 1.25, 1.0, 1.25], [1.0, 1.35, 1.0, 1.35]]

# Now define the HeterogeneousMap object
heterogeneous_map = HeterogeneousMap(
x=x_locs,
y=y_locs,
speed_multipliers=speed_multipliers,
wind_directions=[270.0, 280.0],
)

# Create the heterogeneous_inflow_config_by_wd dictionary
# Now create a new TimeSeries object including the heterogeneous_inflow_config_by_wd
time_series = TimeSeries(
wind_directions=np.array([269.0, 270.0, 271.0, 282.0]),
wind_speeds=8.0,
turbulence_intensities=0.06,
heterogeneous_map=heterogeneous_map,
)

# Note that previously, the a heterogeneous_inflow_config_by_wd, which only only
# specification by wind direction was defined, and for backwards compatibility,
# this is still accepted. However, the HeterogeneousMap object is more flexible.
# The following code produces the same results as the previous code block.
heterogeneous_inflow_config_by_wd = {
"speed_multipliers": speed_ups,
"speed_multipliers": speed_multipliers,
"x": x_locs,
"y": y_locs,
"wind_directions": [270.0, 280.0],
}

# Now create a new TimeSeries object including the heterogeneous_inflow_config_by_wd
time_series = TimeSeries(
wind_directions=np.array([269.0, 270.0, 271.0, 282.0]),
wind_speeds=8.0,
turbulence_intensities=0.06,
heterogeneous_inflow_config_by_wd=heterogeneous_inflow_config_by_wd,
)


# Apply the time series to the FlorisModel
fmodel.set(wind_data=time_series)

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
"""Example: Heterogeneous Speedup by Wind Direction and Wind Speed
The HeterogeneousMap object is a flexible way to define speedups as a function of wind direction
and/or wind speed. It also contains methods to plot the speedup map for a given wind direction
and wind speed.
This example:
1) Instantiates a HeterogeneousMap object with speedups defined for two wind directions
and two wind speeds
2) Visualizes the speedups for two particular combinations of wind direction and wind speed
3) Runs a FLORIS simulation using the HeterogeneousMap and visualizes the results
"""


import matplotlib.pyplot as plt
import numpy as np

from floris import (
FlorisModel,
HeterogeneousMap,
TimeSeries,
)
from floris.flow_visualization import visualize_heterogeneous_cut_plane


# Define a HeterogeneousMap object with speedups defined for two wind directions
# and two wind speeds. The speedups imply no heterogeneity for the first wind direction
# (0 degrees) with heterogeneity for the second wind direction (180 degrees) with the
# specific speedups for this direction depending on the wind speed.
heterogeneous_map = HeterogeneousMap(
x=np.array([0.0, 0.0, 250.0, 500.0, 500.0]),
y=np.array([0.0, 500.0, 250.0, 0.0, 500.0]),
speed_multipliers=np.array(
[
[1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0],
[1.5, 1.0, 1.25, 1.5, 1.0],
[1.0, 1.5, 1.25, 1.0, 1.5],
]
),
wind_directions=np.array([270.0, 270.0, 90.0, 90.0]),
wind_speeds=np.array([5.0, 10.0, 5.0, 10.0]),
)

# Use the HeterogeneousMap object to plot the speedup map for 3 wd/ws combinations
fig, axarr = plt.subplots(1, 3, sharex=True, sharey=True, figsize=(15, 5))


ax = axarr[0]
heterogeneous_map.plot_single_speed_multiplier(
wind_direction=60.0, wind_speed=8.5, ax=ax, vmin=1.0, vmax=1.2
)
ax.set_title("Wind Direction = 60.0\nWind Speed = 8.5")

ax = axarr[1]
heterogeneous_map.plot_single_speed_multiplier(
wind_direction=130.0, wind_speed=4.0, ax=ax, vmin=1.0, vmax=1.2
)
ax.set_title("Wind Direction = 130.0\nWind Speed = 4.0")

ax = axarr[2]
heterogeneous_map.plot_single_speed_multiplier(
wind_direction=280.0, wind_speed=16.0, ax=ax, vmin=1.0, vmax=1.2
)
ax.set_title("Wind Direction = 280.0\nWind Speed = 16.0")
fig.suptitle("Heterogeneous speedup map for several directions and wind speeds")


# Initialize FlorisModel
fmodel = FlorisModel("../inputs/gch.yaml")

# Change the layout to a 2 turbine layout within the heterogeneous domain
fmodel.set(layout_x=[200, 200.0], layout_y=[50, 450.0])

# Define a TimeSeries object with 3 wind directions and wind speeds
# and turbulence intensity and using the above HeterogeneousMap object
time_series = TimeSeries(
wind_directions=np.array([275.0, 95.0, 75.0]),
wind_speeds=np.array([7.0, 6.2, 8.0]),
turbulence_intensities=0.06,
heterogeneous_map=heterogeneous_map,
)

# Apply the time series to the FlorisModel
fmodel.set(wind_data=time_series)

# Run the FLORIS simulation
fmodel.run()

# Visualize each of the findices
fig, axarr = plt.subplots(3, 1, sharex=True, sharey=True, figsize=(10, 10))

for findex in range(3):
ax = axarr[findex]

horizontal_plane = fmodel.calculate_horizontal_plane(
x_resolution=200, y_resolution=100, height=90.0, findex_for_viz=findex
)

visualize_heterogeneous_cut_plane(
cut_plane=horizontal_plane,
fmodel=fmodel,
ax=ax,
title=(
f"Wind Direction = {time_series.wind_directions[findex]}\n"
f"Wind Speed = {time_series.wind_speeds[findex]}"
),
)


plt.show()
1 change: 1 addition & 0 deletions floris/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
visualize_cut_plane,
visualize_quiver,
)
from .heterogeneous_map import HeterogeneousMap
from .parallel_floris_model import ParallelFlorisModel
from .uncertain_floris_model import ApproxFlorisModel, UncertainFlorisModel
from .wind_data import (
Expand Down
45 changes: 43 additions & 2 deletions floris/core/flow_field.py
Original file line number Diff line number Diff line change
Expand Up @@ -291,16 +291,57 @@ def generate_heterogeneous_wind_map(self):
# Linear interpolation is used for points within the user-defined area of values,
# while the freestream wind speed is used for points outside that region
in_region = [
LinearNDInterpolator(list(zip(x, y, z)), multiplier, fill_value=1.0)
self.interpolate_multiplier_xyz(x, y, z, multiplier, fill_value=1.0)
for multiplier in speed_multipliers
]
else:
# Compute the 2-dimensional interpolants for each wind direction
# Linear interpolation is used for points within the user-defined area of values,
# while the freestream wind speed is used for points outside that region
in_region = [
LinearNDInterpolator(list(zip(x, y)), multiplier, fill_value=1.0)
self.interpolate_multiplier_xy(x, y, multiplier, fill_value=1.0)
for multiplier in speed_multipliers
]

self.het_map = in_region

@staticmethod
def interpolate_multiplier_xy(x: NDArrayFloat,
y: NDArrayFloat,
multiplier: NDArrayFloat,
fill_value: float = 1.0):
"""Return an interpolant for a 2D multiplier field.
Args:
x (NDArrayFloat): x locations
y (NDArrayFloat): y locations
multiplier (NDArrayFloat): multipliers
fill_value (float): fill value for points outside the region
Returns:
LinearNDInterpolator: interpolant
"""

return LinearNDInterpolator(list(zip(x, y)), multiplier, fill_value=fill_value)


@staticmethod
def interpolate_multiplier_xyz(x: NDArrayFloat,
y: NDArrayFloat,
z: NDArrayFloat,
multiplier: NDArrayFloat,
fill_value: float = 1.0):
"""Return an interpolant for a 3D multiplier field.
Args:
x (NDArrayFloat): x locations
y (NDArrayFloat): y locations
z (NDArrayFloat): z locations
multiplier (NDArrayFloat): multipliers
fill_value (float): fill value for points outside the region
Returns:
LinearNDInterpolator: interpolant
"""

return LinearNDInterpolator(list(zip(x, y, z)), multiplier, fill_value=fill_value)
17 changes: 17 additions & 0 deletions floris/floris_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -954,6 +954,22 @@ def set_for_viz(self, findex: int, solver_settings: dict) -> None:
findex (int): The findex to set the floris object to.
solver_settings (dict): The solver settings to use for visualization.
"""

# If not None, set the heterogeneous inflow configuration
if self.core.flow_field.heterogeneous_inflow_config is not None:
heterogeneous_inflow_config = {
'x': self.core.flow_field.heterogeneous_inflow_config['x'],
'y': self.core.flow_field.heterogeneous_inflow_config['y'],
'speed_multipliers':
self.core.flow_field.heterogeneous_inflow_config['speed_multipliers'][findex:findex+1],
}
if 'z' in self.core.flow_field.heterogeneous_inflow_config:
heterogeneous_inflow_config['z'] = (
self.core.flow_field.heterogeneous_inflow_config['z']
)
else:
heterogeneous_inflow_config = None

self.set(
wind_speeds=self.wind_speeds[findex:findex+1],
wind_directions=self.wind_directions[findex:findex+1],
Expand All @@ -962,6 +978,7 @@ def set_for_viz(self, findex: int, solver_settings: dict) -> None:
power_setpoints=self.core.farm.power_setpoints[findex:findex+1,:],
awc_modes=self.core.farm.awc_modes[findex:findex+1,:],
awc_amplitudes=self.core.farm.awc_amplitudes[findex:findex+1,:],
heterogeneous_inflow_config = heterogeneous_inflow_config,
solver_settings=solver_settings,
)

Expand Down
Loading

0 comments on commit 0c437c4

Please sign in to comment.