Skip to content

Commit

Permalink
ci : add flake8 to github actions (python linting) (ggerganov#4129)
Browse files Browse the repository at this point in the history
Disabled rules:

* E203 Whitespace before ':' - disabled because we often use 'C' Style where values are aligned

* E211 Whitespace before '(' (E211) - disabled because we often use 'C' Style where values are aligned

* E221 Multiple spaces before operator - disabled because we often use 'C' Style where values are aligned

* E225 Missing whitespace around operator - disabled because it's broken so often it seems like a standard

* E231 Missing whitespace after ',', ';', or ':' - disabled because we often use 'C' Style where values are aligned

* E241 Multiple spaces after ',' - disabled because we often use 'C' Style where values are aligned

* E251 Unexpected spaces around keyword / parameter equals - disabled because it's broken so often it seems like a standard

* E261 At least two spaces before inline comment - disabled because it's broken so often it seems like a standard

* E266 Too many leading '#' for block comment - sometimes used as "section" separator

* E501 Line too long - disabled because it's broken so often it seems like a standard

* E701 Multiple statements on one line (colon) - broken only in convert.py when defining abstract methods (we can use# noqa instead)

* E704 Multiple statements on one line - broken only in convert.py when defining abstract methods (we can use# noqa instead)
  • Loading branch information
Galunid authored Nov 20, 2023
1 parent 40a34fe commit f23c035
Show file tree
Hide file tree
Showing 8 changed files with 153 additions and 97 deletions.
20 changes: 20 additions & 0 deletions .github/workflows/python-lint.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
name: flake8 Lint

on: [push, pull_request]

jobs:
flake8-lint:
runs-on: ubuntu-latest
name: Lint
steps:
- name: Check out source repository
uses: actions/checkout@v3
- name: Set up Python environment
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: flake8 Lint
uses: py-actions/flake8@v2
with:
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704"
exclude: "examples/*,examples/*/**,*/**/__init__.py"
3 changes: 2 additions & 1 deletion convert-hf-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -827,13 +827,14 @@ def set_gguf_parameters(self):
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"]*(hparams["hidden_size"] // hparams["num_attention_heads"])))
self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"])))
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
self.gguf_writer.add_layer_norm_eps(1e-5)

###### CONVERSION LOGIC ######


def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
parser.add_argument(
Expand Down
53 changes: 33 additions & 20 deletions convert-llama-ggml-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,13 @@
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf


class GGMLFormat(IntEnum):
GGML = 0
GGMF = 1
GGJT = 2


class GGMLFType(IntEnum):
ALL_F32 = 0
MOSTLY_F16 = 1
Expand All @@ -38,6 +40,7 @@ class GGMLFType(IntEnum):
MOSTLY_Q5_K_M = 17
MOSTLY_Q6_K = 18


class Hyperparameters:
def __init__(self):
self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
Expand Down Expand Up @@ -69,6 +72,7 @@ def load(self, data, offset):
def __str__(self):
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'


class Vocab:
def __init__(self, load_scores = True):
self.items = []
Expand All @@ -90,6 +94,7 @@ def load(self, data, offset, n_vocab):
self.items.append((item_text, item_score))
return offset - orig_offset


class Tensor:
def __init__(self, use_padding = True):
self.name = None
Expand Down Expand Up @@ -123,6 +128,7 @@ def load(self, data, offset):
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
return offset - orig_offset


class GGMLModel:
def __init__(self):
self.hyperparameters = None
Expand Down Expand Up @@ -159,8 +165,8 @@ def validate_conversion(self, ftype):
if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
if ftype in ( GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
err = 'Q4 and Q8 quantizations changed in GGJTv3.'
if len(err) > 0:
raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
Expand All @@ -187,6 +193,7 @@ def load(self, data, offset):
hp.set_n_ff(self)
return offset


class GGMLToGGUF:
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
hp = ggml_model.hyperparameters
Expand Down Expand Up @@ -217,7 +224,7 @@ def save(self):
gguf_writer = gguf.GGUFWriter(
self.cfg.output,
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
use_temp_file = False )
use_temp_file = False)
self.add_params(gguf_writer)
self.add_vocab(gguf_writer)
if self.special_vocab is not None:
Expand Down Expand Up @@ -341,7 +348,8 @@ def add_tensors(self, gguf_writer):
mapped_name,
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
raw_shape = tempdims,
raw_dtype = tensor.dtype )
raw_dtype = tensor.dtype)


def handle_metadata(cfg, hp):
import convert
Expand All @@ -365,38 +373,40 @@ def handle_metadata(cfg, hp):
raise ValueError('Unable to load metadata')
vocab = convert.load_vocab(
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
cfg.vocabtype )
cfg.vocabtype)
# FIXME: Respect cfg.vocab_dir?
svocab = gguf.SpecialVocab(cfg.model_metadata_dir,
load_merges = cfg.vocabtype == 'bpe',
n_vocab = vocab.vocab_size)
load_merges = cfg.vocabtype == 'bpe',
n_vocab = vocab.vocab_size)
convert.check_vocab_size(params, vocab)
return (params, vocab, svocab)


def handle_args():
parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
parser.add_argument('--input', '-i', type = Path, required = True,
help = 'Input GGMLv3 filename')
help = 'Input GGMLv3 filename')
parser.add_argument('--output', '-o', type = Path, required = True,
help ='Output GGUF filename')
help ='Output GGUF filename')
parser.add_argument('--name',
help = 'Set model name')
help = 'Set model name')
parser.add_argument('--desc',
help = 'Set model description')
help = 'Set model description')
parser.add_argument('--gqa', type = int, default = 1,
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
parser.add_argument('--eps', default = '5.0e-06',
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
parser.add_argument('--context-length', '-c', type=int, default = 2048,
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
parser.add_argument('--model-metadata-dir', '-m', type = Path,
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
parser.add_argument("--vocab-dir", type=Path,
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
return parser.parse_args()


def main():
cfg = handle_args()
print(f'* Using config: {cfg}')
Expand All @@ -406,7 +416,7 @@ def main():
data = np.memmap(cfg.input, mode = 'r')
model = GGMLModel()
print('* Scanning GGML input file')
offset = model.load(data, 0)
offset = model.load(data, 0) # noqa
print(f'* GGML model hyperparameters: {model.hyperparameters}')
vocab_override = None
params_override = None
Expand All @@ -421,12 +431,15 @@ def main():
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
if model.file_format == GGMLFormat.GGML:
print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
converter = GGMLToGGUF(model, data, cfg,
converter = GGMLToGGUF(
model, data, cfg,
params_override = params_override,
vocab_override = vocab_override,
special_vocab = special_vocab )
special_vocab = special_vocab
)
converter.save()
print(f'* Successful completion. Output saved to: {cfg.output}')


if __name__ == '__main__':
main()
4 changes: 3 additions & 1 deletion convert-persimmon-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf


def _flatten_dict(dct, tensors, prefix=None):
assert isinstance(dct, dict)
for key in dct.keys():
Expand All @@ -21,6 +22,7 @@ def _flatten_dict(dct, tensors, prefix=None):
raise ValueError(type(dct[key]))
return None


def _get_sentencepiece_tokenizer_info(dir_model: Path):
tokenizer_path = dir_model / 'adept_vocab.model'
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
Expand Down Expand Up @@ -54,6 +56,7 @@ def _get_sentencepiece_tokenizer_info(dir_model: Path):
pass
return tokens, scores, toktypes


def main():
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
Expand Down Expand Up @@ -125,6 +128,5 @@ def main():
print("")



if __name__ == '__main__':
main()
Loading

0 comments on commit f23c035

Please sign in to comment.