Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Besselj and Besselk for all integer and noninteger postive orders #29

Merged
merged 14 commits into from
Aug 4, 2022
18 changes: 4 additions & 14 deletions src/U_polynomials.jl
Original file line number Diff line number Diff line change
Expand Up @@ -70,10 +70,10 @@ function Uk_poly_Hankel(p, v, p2, x::T) where T <: Float64
end
Uk_poly_Hankel(p, v, p2, x) = Uk_poly_Jn(p, v, p2, x::BigFloat)

Uk_poly_In(p, v, p2, ::Type{Float32}) = Uk_poly3(p, v, p2)[1]
Uk_poly_In(p, v, p2, ::Type{Float64}) = Uk_poly5(p, v, p2)[1]
Uk_poly_Kn(p, v, p2, ::Type{Float32}) = Uk_poly3(p, v, p2)[2]
Uk_poly_Kn(p, v, p2, ::Type{Float64}) = Uk_poly5(p, v, p2)[2]
Uk_poly_In(p, v, p2, ::Type{Float32}) = Uk_poly5(p, v, p2)[1]
Uk_poly_In(p, v, p2, ::Type{Float64}) = Uk_poly10(p, v, p2)[1]
Uk_poly_Kn(p, v, p2, ::Type{Float32}) = Uk_poly5(p, v, p2)[2]
Uk_poly_Kn(p, v, p2, ::Type{Float64}) = Uk_poly10(p, v, p2)[2]

@inline function split_evalpoly(x, P)
# polynomial P must have an even number of terms
Expand All @@ -97,16 +97,6 @@ Uk_poly_Kn(p, v, p2, ::Type{Float64}) = Uk_poly5(p, v, p2)[2]
end
end

function Uk_poly3(p, v, p2)
u0 = 1.0
u1 = evalpoly(p2, (0.125, -0.20833333333333334))
u2 = evalpoly(p2, (0.0703125, -0.4010416666666667, 0.3342013888888889))
u3 = evalpoly(p2, (0.0732421875, -0.8912109375, 1.8464626736111112, -1.0258125964506173))

Poly = (u0, u1, u2, u3)

return split_evalpoly(-p/v, Poly)
end
function Uk_poly5(p, v, p2)
u0 = 1.0
u1 = evalpoly(p2, (0.125, -0.20833333333333334))
Expand Down
254 changes: 178 additions & 76 deletions src/besseli.jl
Original file line number Diff line number Diff line change
Expand Up @@ -130,26 +130,91 @@ function besseli1x(x::T) where T <: Union{Float32, Float64}
return z
end

# Modified Bessel functions of the first kind of order nu
# besseli(nu, x)
#
# A numerical routine to compute the modified Bessel function of the first kind I_{ν}(x) [1]
# for real orders and arguments of positive or negative value. The routine is based on several
# publications [2-6] that calculate I_{ν}(x) for positive arguments and orders where
# reflection identities are used to compute negative arguments and orders.
#
# In particular, the reflectance identities for negative noninteger orders I_{−ν}(x) = I_{ν}(x) + 2 / πsin(πν)*Kν(x)
# and for negative integer orders I_{−n}(x) = I_n(x) are used.
# For negative arguments of integer order, In(−x) = (−1)^n In(x) is used and for
# noninteger orders, Iν(−x) = exp(iπν) Iν(x) is used. For negative orders and arguments the previous identities are combined.
#
# The identities are computed by calling the `besseli_positive_args(nu, x)` function which computes I_{ν}(x)
# for positive arguments and orders. For large orders, Debye's uniform asymptotic expansions are used where large arguments (x>>nu)
# a large argument expansion is used. The rest of the values are computed using the power series.

# [1] https://dlmf.nist.gov/10.40.E1
# [2] Amos, Donald E. "Computation of modified Bessel functions and their ratios." Mathematics of computation 28.125 (1974): 239-251.
# [3] Gatto, M. A., and J. B. Seery. "Numerical evaluation of the modified Bessel functions I and K."
# Computers & Mathematics with Applications 7.3 (1981): 203-209.
# [4] Temme, Nico M. "On the numerical evaluation of the modified Bessel function of the third kind."
# Journal of Computational Physics 19.3 (1975): 324-337.
# [5] Amos, DEv. "Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order."
# ACM Transactions on Mathematical Software (TOMS) 12.3 (1986): 265-273.
# [6] Segura, Javier, P. Fernández de Córdoba, and Yu L. Ratis. "A code to evaluate modified bessel functions based on thecontinued fraction method."
# Computer physics communications 105.2-3 (1997): 263-272.
#

"""
besseli(nu, x::T) where T <: Union{Float32, Float64}
besselk(x::T) where T <: Union{Float32, Float64}

Modified Bessel function of the first kind of order nu, ``I_{nu}(x)``.
Nu must be real.
Modified Bessel function of the second kind of order nu, ``K_{nu}(x)``.
"""
function besseli(nu, x::T) where T <: Union{Float32, Float64}
nu == 0 && return besseli0(x)
nu == 1 && return besseli1(x)

if x > maximum((T(30), nu^2 / 4))
return T(besseli_large_argument(nu, x))
elseif x <= 2 * sqrt(nu + 1)
return T(besseli_small_arguments(nu, x))
elseif nu < 100
return T(_besseli_continued_fractions(nu, x))
function besseli(nu::Real, x::T) where T
isinteger(nu) && return besseli(Int(nu), x)
abs_nu = abs(nu)
abs_x = abs(x)

if nu >= 0
if x >= 0
return besseli_positive_args(abs_nu, abs_x)
else
return cispi(abs_nu) * besseli_positive_args(abs_nu, abs_x)
end
else
return T(besseli_large_orders(nu, x))
if x >= 0
return besseli_positive_args(abs_nu, abs_x) + 2 / π * sinpi(abs_nu) * besselk_positive_args(abs_nu, abs_x)
else
Iv = besseli_positive_args(abs_nu, abs_x)
Kv = besselk_positive_args(abs_nu, abs_x)
return cispi(abs_nu) * Iv + 2 / π * sinpi(abs_nu) * (cispi(-abs_nu) * Kv - im * π * Iv)
heltonmc marked this conversation as resolved.
Show resolved Hide resolved
end
end
end
function besseli(nu::Integer, x::T) where T
abs_nu = abs(nu)
abs_x = abs(x)
sg = iseven(abs_nu) ? 1 : -1

if x >= 0
return besseli_positive_args(abs_nu, abs_x)
else
return sg * besseli_positive_args(abs_nu, abs_x)
end
end

"""
besseli_positive_args(nu, x::T) where T <: Union{Float32, Float64}

Modified Bessel function of the first kind of order nu, ``I_{nu}(x)`` for positive arguments.
"""
function besseli_positive_args(nu, x::T) where T <: Union{Float32, Float64}
iszero(nu) && return besseli0(x)
isone(nu) && return besseli1(x)

# use large argument expansion if x >> nu
besseli_large_argument_cutoff(nu, x) && return besseli_large_argument(nu, x)

# use uniform debye expansion if x or nu is large
besselik_debye_cutoff(nu, x) && return T(besseli_large_orders(nu, x))

# for rest of values use the power series
return besseli_power_series(nu, x)
end

"""
besselix(nu, x::T) where T <: Union{Float32, Float64}
Expand All @@ -158,19 +223,31 @@ Scaled modified Bessel function of the first kind of order nu, ``I_{nu}(x)*e^{-x
Nu must be real.
"""
function besselix(nu, x::T) where T <: Union{Float32, Float64}
nu == 0 && return besseli0x(x)
nu == 1 && return besseli1x(x)

if x > maximum((T(30), nu^2 / 4))
return T(besseli_large_argument_scaled(nu, x))
elseif x <= 2 * sqrt(nu + 1)
return T(besseli_small_arguments(nu, x)) * exp(-x)
elseif nu < 100
return T(_besseli_continued_fractions_scaled(nu, x))
else
return besseli_large_orders_scaled(nu, x)
end
iszero(nu) && return besseli0x(x)
isone(nu) && return besseli1x(x)

# use large argument expansion if x >> nu
besseli_large_argument_cutoff(nu, x) && return besseli_large_argument_scaled(nu, x)

# use uniform debye expansion if x or nu is large
besselik_debye_cutoff(nu, x) && return T(besseli_large_orders_scaled(nu, x))

# for rest of values use the power series
return besseli_power_series(nu, x) * exp(-x)
end

#####
##### Debye's uniform asymptotic for I_{nu}(x)
#####

# Implements the uniform asymptotic expansion https://dlmf.nist.gov/10.41
# In general this is valid when either x or nu is gets large
# see the file src/U_polynomials.jl for more details
"""
besseli_large_orders(nu, x::T)

Debey's uniform asymptotic expansion for large order valid when v-> ∞ or x -> ∞
"""
function besseli_large_orders(v, x::T) where T <: Union{Float32, Float64}
S = promote_type(T, Float64)
x = S(x)
Expand All @@ -183,6 +260,7 @@ function besseli_large_orders(v, x::T) where T <: Union{Float32, Float64}

return coef*Uk_poly_In(p, v, p2, T)
end

function besseli_large_orders_scaled(v, x::T) where T <: Union{Float32, Float64}
S = promote_type(T, Float64)
x = S(x)
Expand All @@ -195,39 +273,18 @@ function besseli_large_orders_scaled(v, x::T) where T <: Union{Float32, Float64}

return T(coef*Uk_poly_In(p, v, p2, T))
end
function _besseli_continued_fractions(nu, x::T) where T
S = promote_type(T, Float64)
xx = S(x)
knum1, knu = besselk_up_recurrence(xx, besselk1(xx), besselk0(xx), 1, nu-1)
# if knu or knum1 is zero then besseli will likely overflow
(iszero(knu) || iszero(knum1)) && return throw(DomainError(x, "Overflow error"))
return 1 / (x * (knum1 + knu / steed(nu, x)))
end
function _besseli_continued_fractions_scaled(nu, x::T) where T
S = promote_type(T, Float64)
xx = S(x)
knum1, knu = besselk_up_recurrence(xx, besselk1x(xx), besselk0x(xx), 1, nu-1)
# if knu or knum1 is zero then besseli will likely overflow
(iszero(knu) || iszero(knum1)) && return throw(DomainError(x, "Overflow error"))
return 1 / (x * (knum1 + knu / steed(nu, x)))
end
function steed(n, x::T) where T
MaxIter = 1000
xinv = inv(x)
xinv2 = 2 * xinv
d = x / (n + n)
a = d
h = a
b = muladd(2, n, 2) * xinv
for _ in 1:MaxIter
d = inv(b + d)
a *= muladd(b, d, -1)
h = h + a
b = b + xinv2
abs(a / h) <= eps(T) && break
end
return h
end

#####
##### Large argument expansion (x>>nu) for I_{nu}(x)
#####

# Implements the uniform asymptotic expansion https://dlmf.nist.gov/10.40.E1
# In general this is valid when x > nu^2
"""
besseli_large_orders(nu, x::T)

Debey's uniform asymptotic expansion for large order valid when v-> ∞ or x -> ∞
"""
function besseli_large_argument(v, z::T) where T
MaxIter = 1000
a = exp(z / 2)
Expand Down Expand Up @@ -263,26 +320,71 @@ function besseli_large_argument_scaled(v, z::T) where T
end
return res * coef
end
besseli_large_argument_cutoff(nu, x) = x > maximum((30.0, nu^2 / 6))

function besseli_small_arguments(v, z::T) where T
S = promote_type(T, Float64)
x = S(z)
if v < 20
coef = (x / 2)^v / factorial(v)
else
vinv = inv(v)
coef = sqrt(vinv / (2 * π)) * MathConstants.e^(v * (log(x / (2 * v)) + 1))
coef *= evalpoly(vinv, (1, -1/12, 1/288, 139/51840, -571/2488320, -163879/209018880, 5246819/75246796800, 534703531/902961561600))
#####
##### Power series for I_{nu}(x)
#####

# Use power series form of I_v(x) which is generally accurate across all values though slower for larger x
# https://dlmf.nist.gov/10.25.E2
"""
besseli_power_series(nu, x::T) where T <: Float64

Computes ``I_{nu}(x)`` using the power series for any value of nu.
"""
function besseli_power_series(v, x::T) where T
MaxIter = 3000
out = zero(T)
xs = (x/2)^v
a = xs / gamma(v + one(T))
t2 = (x/2)^2
for i in 0:MaxIter
out += a
abs(a) < eps(T) * abs(out) && break
a *= inv((v + i + one(T)) * (i + one(T))) * t2
end
return out
end

#=
# the following is a deprecated version of the continued fraction approach
# using K0 and K1 as starting values then forward recurrence up till nu
# then using the wronskian to getting I_{nu}
# in general this method is slow and depends on starting values of K0 and K1
# which is not very flexible for arbitary orders

function _besseli_continued_fractions(nu, x::T) where T
S = promote_type(T, Float64)
xx = S(x)
knum1, knu = besselk_up_recurrence(xx, besselk1(xx), besselk0(xx), 1, nu-1)
# if knu or knum1 is zero then besseli will likely overflow
(iszero(knu) || iszero(knum1)) && return throw(DomainError(x, "Overflow error"))
return 1 / (x * (knum1 + knu / steed(nu, x)))
end
function _besseli_continued_fractions_scaled(nu, x::T) where T
S = promote_type(T, Float64)
xx = S(x)
knum1, knu = besselk_up_recurrence(xx, besselk1x(xx), besselk0x(xx), 1, nu-1)
# if knu or knum1 is zero then besseli will likely overflow
(iszero(knu) || iszero(knum1)) && return throw(DomainError(x, "Overflow error"))
return 1 / (x * (knum1 + knu / steed(nu, x)))
end
function steed(n, x::T) where T
MaxIter = 1000
out = one(S)
zz = x^2 / 4
a = one(S)
for k in 1:MaxIter
a *= zz / (k * (k + v))
out += a
a <= eps(T) && break
xinv = inv(x)
xinv2 = 2 * xinv
d = x / (n + n)
a = d
h = a
b = muladd(2, n, 2) * xinv
for _ in 1:MaxIter
d = inv(b + d)
a *= muladd(b, d, -1)
h = h + a
b = b + xinv2
abs(a / h) <= eps(T) && break
end
return coef * out
return h
end
=#
Loading