Skip to content

Commit

Permalink
Merge pull request #47 from JuliaMath/cgeoga/master
Browse files Browse the repository at this point in the history
Update sphericalbesselk and add sphericalbesseli
  • Loading branch information
heltonmc authored Sep 19, 2022
2 parents e6f0ac3 + 26ae05c commit abc819f
Show file tree
Hide file tree
Showing 7 changed files with 148 additions and 37 deletions.
4 changes: 3 additions & 1 deletion NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,9 @@ For bug fixes, performance enhancements, or fixes to unexported functions we wil
# Unreleased

### Added
- Add more optimized methods for Float32 calculations that are faster([PR #43](https://github.com/JuliaMath/Bessels.jl/pull/43))
- Add more optimized methods for Float32 calculations that are faster ([PR #43](https://github.com/JuliaMath/Bessels.jl/pull/43))
- Add methods for computing modified spherical bessel function of second ([PR #46](https://github.com/JuliaMath/Bessels.jl/pull/46) contributed by @cgeoga and first ([PR #47](https://github.com/JuliaMath/Bessels.jl/pull/47))) kind. These functions are currently not exported. Closes ([Issue #25](https://github.com/JuliaMath/Bessels.jl/issues/25))
- Asymptotic expansion for x >> nu was added ([PR #48](https://github.com/JuliaMath/Bessels.jl/pull/48)) that decreases computation time for large arguments. Contributed by @cgeoga

### Fixed
- Reduce compile time and time to first call of besselj and bessely ([PR #42](https://github.com/JuliaMath/Bessels.jl/pull/42))
Expand Down
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "Bessels"
uuid = "0e736298-9ec6-45e8-9647-e4fc86a2fe38"
authors = ["Michael Helton <[email protected]> and contributors"]
version = "0.2.0"
version = "0.2.1"

[compat]
julia = "1.6"
Expand Down
3 changes: 2 additions & 1 deletion src/besseli.jl
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,7 @@ _besseli(nu, x::Float16) = Float16(_besseli(nu, Float32(x)))

function _besseli(nu, x::T) where T <: Union{Float32, Float64}
isinteger(nu) && return _besseli(Int(nu), x)
~isfinite(x) && return x
abs_nu = abs(nu)
abs_x = abs(x)

Expand All @@ -192,6 +193,7 @@ function _besseli(nu, x::T) where T <: Union{Float32, Float64}
end
end
function _besseli(nu::Integer, x::T) where T <: Union{Float32, Float64}
~isfinite(x) && return x
abs_nu = abs(nu)
abs_x = abs(x)
sg = iseven(abs_nu) ? 1 : -1
Expand All @@ -211,7 +213,6 @@ Modified Bessel function of the first kind of order nu, ``I_{nu}(x)`` for positi
function besseli_positive_args(nu, x::T) where T <: Union{Float32, Float64}
iszero(nu) && return besseli0(x)
isone(nu) && return besseli1(x)
isinf(x) && return T(Inf)

# use large argument expansion if x >> nu
besseli_large_argument_cutoff(nu, x) && return besseli_large_argument(nu, x)
Expand Down
30 changes: 16 additions & 14 deletions src/besselk.jl
Original file line number Diff line number Diff line change
Expand Up @@ -160,6 +160,7 @@ end
#
# The identities are computed by calling the `besseli_positive_args(nu, x)` function which computes K_{ν}(x)
# for positive arguments and orders. For large orders, Debye's uniform asymptotic expansions are used.
# For large arguments x >> nu, large argument expansion is used [9].
# For small value and when nu > ~x the power series is used. The rest of the values are computed using slightly different methods.
# The power series for besseli is modified to give both I_{v} and I_{v-1} where the ratio K_{v+1} / K_{v} is computed using continued fractions [8].
# The wronskian connection formula is then used to compute K_v.
Expand All @@ -178,6 +179,7 @@ end
# arXiv preprint arXiv:2201.00090 (2022).
# [8] Cuyt, A. A., Petersen, V., Verdonk, B., Waadeland, H., & Jones, W. B. (2008).
# Handbook of continued fractions for special functions. Springer Science & Business Media.
# [9] http://dlmf.nist.gov/10.40.E2
#

"""
Expand Down Expand Up @@ -226,17 +228,14 @@ function besselk_positive_args(nu, x::T) where T <: Union{Float32, Float64}
# dispatch to avoid uniform expansion when nu = 0
iszero(nu) && return besselk0(x)

# pre-compute the uniform asymptotic expansion cutoff:
debye_cut = besselik_debye_cutoff(nu, x)
# check if nu is a half-integer
(isinteger(nu-1/2) && sphericalbesselk_cutoff(nu)) && return sphericalbesselk_int(Int(nu-1/2), x)*SQPIO2(T)*sqrt(x)

# check if nu is a half-integer:
(isinteger(nu-1/2) && !debye_cut) && return sphericalbesselk(nu-1/2, x)*SQRT_PID2(T)*sqrt(x)

# check if the standard asymptotic expansion can be used:
besselk_asexp_cutoff(nu, x) && return besselk_large_argument(nu, x)
# check if the standard asymptotic expansion can be used
besseli_large_argument_cutoff(nu, x) && return besselk_large_argument(nu, x)

# use uniform debye expansion if x or nu is large
debye_cut && return besselk_large_orders(nu, x)
besselik_debye_cutoff(nu, x) && return besselk_large_orders(nu, x)

# for integer nu use forward recurrence starting with K_0 and K_1
isinteger(nu) && return besselk_up_recurrence(x, besselk1(x), besselk0(x), 1, nu)[1]
Expand All @@ -260,6 +259,9 @@ function _besselkx(nu, x::T) where T <: Union{Float32, Float64}
# dispatch to avoid uniform expansion when nu = 0
iszero(nu) && return besselk0x(x)

# check if the standard asymptotic expansion can be used
besseli_large_argument_cutoff(nu, x) && return besselk_large_argument_scaled(nu, x)

# use uniform debye expansion if x or nu is large
besselik_debye_cutoff(nu, x) && return besselk_large_orders_scaled(nu, x)

Expand Down Expand Up @@ -434,13 +436,13 @@ end
besselk_power_series_cutoff(nu, x::Float64) = x < 2.0 || nu > 1.6x - 1.0
besselk_power_series_cutoff(nu, x::Float32) = x < 10.0f0 || nu > 1.65f0*x - 8.0f0

#####
##### Large argument expansion for K_{nu}(x)
#####

"""
besselk_asymptoticexp(v, x, order)
Computes the asymptotic expansion of K_ν w.r.t. argument. Accurate for large x, and faster than uniform asymptotic expansion for small to small-ish orders. The default order of the expansion in `Bessels.besselk` is 10.
"""
besselk_asexp_cutoff(nu, x::T) where T = (nu < 20.0) && (x > ASEXP_CUTOFF(T))
# Computes the asymptotic expansion of K_ν w.r.t. argument.
# Accurate for large x, and faster than uniform asymptotic expansion for small to small-ish orders
# See http://dlmf.nist.gov/10.40.E2

function besselk_large_argument(v, x::T) where T
a = exp(-x / 2)
Expand Down
6 changes: 0 additions & 6 deletions src/constants.jl
Original file line number Diff line number Diff line change
Expand Up @@ -284,9 +284,3 @@ const Q3_k1(::Type{Float64}) = (
2.88448064302447607e1, 2.27912927104139732e0,
2.50358186953478678e-2
)

const SQRT_PID2(::Type{Float64}) = 1.2533141373155003
const SQRT_PID2(::Type{Float32}) = 1.2533141f0

const ASEXP_CUTOFF(::Type{Float64}) = 35.0
const ASEXP_CUTOFF(::Type{Float32}) = 35.0f0 # temporary
84 changes: 71 additions & 13 deletions src/modifiedsphericalbessel.jl
Original file line number Diff line number Diff line change
@@ -1,40 +1,98 @@

# Modified Spherical Bessel functions
#
# sphericalbesseli(nu, x), sphericalbesselk(nu, x)
#
# A numerical routine to compute the modified spherical bessel functions of the first and second kind.
# The modified spherical bessel function of the first kind is computed using the power series for small arguments,
# explicit formulas for (nu=0,1,2), and using its relation to besseli for other arguments [1].
# The modified bessel function of the second kind is computed for small to moderate integer orders using forward recurrence starting from explicit formulas for k0(x) = exp(-x) / x and k1(x) = k0(x) * (x+1) / x [2].
# Large orders are determined from the uniform asymptotic expansions (see src/besselk.jl for details)
# For non-integer orders, we directly call the besselk routine using the relation k_{n}(x) = sqrt(pi/(2x))*besselk(n+1/2, x) [2].
#
# [1] https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html
# [2] https://mathworld.wolfram.com/ModifiedSphericalBesselFunctionoftheSecondKind.html
#
"""
sphericalbesselk(nu, x::T) where T <: {Float32, Float64}
Computes `k_{ν}(x)`, the modified second-kind spherical Bessel function, and offers special branches for integer orders.
"""
sphericalbesselk(nu, x) = _sphericalbesselk(nu, float(x))
sphericalbesselk(nu::Real, x::Real) = _sphericalbesselk(nu, float(x))

_sphericalbesselk(nu, x::Float16) = Float16(_sphericalbesselk(nu, Float32(x)))

function _sphericalbesselk(nu, x::T) where T
isnan(x) && return NaN
if isinteger(nu) && nu < 41.5
function _sphericalbesselk(nu, x::T) where T <: Union{Float32, Float64}
if ~isfinite(x)
isnan(x) && return x
isinf(x) && return zero(x)
end
if isinteger(nu) && sphericalbesselk_cutoff(nu)
if x < zero(x)
return throw(DomainError(x, "Complex result returned for real arguments. Complex arguments are currently not supported"))
end
# using ifelse here to hopefully cut out a branch on nu < 0 or not. The
# symmetry here is that
# using ifelse here to cut out a branch on nu < 0 or not.
# The symmetry here is that
# k_{-n} = (...)*K_{-n + 1/2}
# = (...)*K_{|n| - 1/2}
# = (...)*K_{|n|-1 + 1/2}
# = k_{|n|-1}
# = k_{|n|-1}
_nu = ifelse(nu<zero(nu), -one(nu)-nu, nu)
return sphericalbesselk_int(Int(_nu), x)
else
return inv(SQRT_PID2(T)*sqrt(x))*besselk(nu+1/2, x)
return inv(SQPIO2(T)*sqrt(x))*besselk(nu+1/2, x)
end
end
sphericalbesselk_cutoff(nu) = nu < 41.5

function sphericalbesselk_int(v::Int, x)
b0 = inv(x)
b1 = (x+one(x))/(x*x)
iszero(v) && return b0*exp(-x)
xinv = inv(x)
b0 = exp(-x) * xinv
b1 = b0 * (x + one(x)) * xinv
iszero(v) && return b0
_v = one(v)
invx = inv(x)
while _v < v
_v += one(_v)
b0, b1 = b1, b0 + (2*_v - one(_v))*b1*invx
end
exp(-x)*b1
b1
end

"""
sphericalbesseli(nu, x::T) where T <: {Float32, Float64}
Computes `i_{ν}(x)`, the modified first-kind spherical Bessel function.
"""
sphericalbesseli(nu::Real, x::Real) = _sphericalbesseli(nu, float(x))

_sphericalbesseli(nu, x::Float16) = Float16(_sphericalbesseli(nu, Float32(x)))

function _sphericalbesseli(nu, x::T) where T <: Union{Float32, Float64}
isinf(x) && return x
x < zero(x) && throw(DomainError(x, "Complex result returned for real arguments. Complex arguments are currently not supported"))

sphericalbesselj_small_args_cutoff(nu, x::T) && return sphericalbesseli_small_args(nu, x)
isinteger(nu) && return _sphericalbesseli_small_orders(Int(nu), x)
return SQPIO2(T)*besseli(nu+1/2, x) / sqrt(x)
end

function _sphericalbesseli_small_orders(nu::Integer, x::T) where T
# prone to cancellation in the subtraction
# best to expand and group
nu_abs = abs(nu)
x2 = x*x
sinhx = sinh(x)
coshx = cosh(x)
nu_abs == 0 && return sinhx / x
nu_abs == 1 && return (x*coshx - sinhx) / x2
nu_abs == 2 && return (x2*sinhx + 3*(sinhx - x*coshx)) / (x2*x)
return SQPIO2(T)*besseli(nu+1/2, x) / sqrt(x)
end

function sphericalbesseli_small_args(nu, x::T) where T
iszero(x) && return iszero(nu) ? one(T) : x
x2 = x^2 / 4
coef = evalpoly(x2, (1, inv(T(3)/2 + nu), inv(5 + nu), inv(T(21)/2 + nu), inv(18 + nu)))
a = SQPIO2(T) / (gamma(T(3)/2 + nu) * 2^(nu + T(1)/2))
return x^nu * a * coef
end
56 changes: 55 additions & 1 deletion test/sphericalbessel_test.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,16 @@ x = 1e-15
@test Bessels.sphericalbessely(1, x) SpecialFunctions.sphericalbessely(1, x)
@test Bessels.sphericalbessely(5.5, x) SpecialFunctions.sphericalbessely(5.5, x)
@test Bessels.sphericalbessely(10, x) SpecialFunctions.sphericalbessely(10, x)
@test Bessels.sphericalbesselk(5.5, x) SpecialFunctions.besselk(5.5 + 1/2, x) * sqrt( 2 / (x*pi))
@test Bessels.sphericalbesselk(10, x) SpecialFunctions.besselk(10 + 1/2, x) * sqrt( 2 / (x*pi))

x = 1e-20
@test Bessels.sphericalbesseli(0, x) SpecialFunctions.besseli(0 + 1/2, x) * sqrt( pi / (x*2))
@test Bessels.sphericalbesseli(1, x) SpecialFunctions.besseli(1 + 1/2, x) * sqrt( pi / (x*2))
@test Bessels.sphericalbesseli(2, x) SpecialFunctions.besseli(2 + 1/2, x) * sqrt( pi / (x*2))
@test Bessels.sphericalbesseli(3, x) SpecialFunctions.besseli(3 + 1/2, x) * sqrt( pi / (x*2))
@test Bessels.sphericalbesseli(4, x) SpecialFunctions.besseli(4 + 1/2, x) * sqrt( pi / (x*2))
@test Bessels.sphericalbesseli(6.5, x) SpecialFunctions.besseli(6.5 + 1/2, x) * sqrt( pi / (x*2))

# test zero
@test isone(Bessels.sphericalbesselj(0, 0.0))
Expand All @@ -20,33 +30,77 @@ x = 1e-15
@test Bessels.sphericalbessely(10, 0.0) == -Inf
@test Bessels.sphericalbessely(290, 0.0) == -Inf

@test isinf(Bessels.sphericalbesselk(0, 0.0))
@test isinf(Bessels.sphericalbesselk(4, 0.0))
@test isinf(Bessels.sphericalbesselk(10.2, 0.0))

x = 0.0
@test isone(Bessels.sphericalbesseli(0, x))
@test iszero(Bessels.sphericalbesseli(1, x))
@test iszero(Bessels.sphericalbesseli(2, x))
@test iszero(Bessels.sphericalbesseli(3, x))
@test iszero(Bessels.sphericalbesseli(4, x))
@test iszero(Bessels.sphericalbesseli(6.4, x))

# test Inf
@test iszero(Bessels.sphericalbesselj(1, Inf))
@test iszero(Bessels.sphericalbesselj(10.2, Inf))
@test iszero(Bessels.sphericalbessely(3, Inf))
@test iszero(Bessels.sphericalbessely(4.5, Inf))

@test iszero(Bessels.sphericalbesselk(0, Inf))
@test iszero(Bessels.sphericalbesselk(4, Inf))
@test iszero(Bessels.sphericalbesselk(10.2, Inf))

x = Inf
@test isinf(Bessels.sphericalbesseli(0, x))
@test isinf(Bessels.sphericalbesseli(1, x))
@test isinf(Bessels.sphericalbesseli(2, x))
@test isinf(Bessels.sphericalbesseli(3, x))
@test isinf(Bessels.sphericalbesseli(4, x))
@test isinf(Bessels.sphericalbesseli(6.4, x))

# test NaN
@test isnan(Bessels.sphericalbesselj(1.4, NaN))
@test isnan(Bessels.sphericalbesselj(4.0, NaN))
@test isnan(Bessels.sphericalbessely(1.4, NaN))
@test isnan(Bessels.sphericalbessely(4.0, NaN))

@test isnan(Bessels.sphericalbesselk(1.4, NaN))
@test isnan(Bessels.sphericalbesselk(4.0, NaN))

x = NaN
@test isnan(Bessels.sphericalbesseli(0, x))
@test isnan(Bessels.sphericalbesseli(1, x))
@test isnan(Bessels.sphericalbesseli(2, x))
@test isnan(Bessels.sphericalbesseli(3, x))
@test isnan(Bessels.sphericalbesseli(4, x))
@test isnan(Bessels.sphericalbesseli(6.4, x))

# test Float16, Float32 types
@test Bessels.sphericalbesselj(Float16(1.4), Float16(1.2)) isa Float16
@test Bessels.sphericalbessely(Float16(1.4), Float16(1.2)) isa Float16
@test Bessels.sphericalbesselj(1.4f0, 1.2f0) isa Float32
@test Bessels.sphericalbessely(1.4f0, 1.2f0) isa Float32

@test Bessels.sphericalbesselk(Float16(1.4), Float16(1.2)) isa Float16
@test Bessels.sphericalbesselk(1.0f0, 1.2f0) isa Float32

@test Bessels.sphericalbesseli(Float16(1.4), Float16(1.2)) isa Float16
@test Bessels.sphericalbesseli(1.0f0, 1.2f0) isa Float32

for x in 0.5:1.0:100.0, v in [0, 1, 5.5, 8.2, 10]
for x in 0.5:1.5:100.0, v in [0, 1, 2, 3, 4, 5.5, 8.2, 10]
@test isapprox(Bessels.sphericalbesselj(v, x), SpecialFunctions.sphericalbesselj(v, x), rtol=1e-12)
@test isapprox(Bessels.sphericalbessely(v, x), SpecialFunctions.sphericalbessely(v, x), rtol=1e-12)
@test isapprox(Bessels.sphericalbesselk(v, x), SpecialFunctions.besselk(v+1/2, x) * sqrt( 2 / (x*pi)), rtol=1e-12)
@test isapprox(Bessels.sphericalbesseli(v, x), SpecialFunctions.besseli(v+1/2, x) * sqrt( pi / (x*2)), rtol=1e-12)
end

for x in 5.5:4.0:160.0, v in [20, 25.0, 32.4, 40.0, 45.12, 50.0, 55.2, 60.124, 70.23, 75.0, 80.0, 92.3, 100.0, 120.0]
@test isapprox(Bessels.sphericalbesselj(v, x), SpecialFunctions.sphericalbesselj(v, x), rtol=3e-12)
@test isapprox(Bessels.sphericalbessely(v, x), SpecialFunctions.sphericalbessely(v, x), rtol=3e-12)
@test isapprox(Bessels.sphericalbesselk(v, x), SpecialFunctions.besselk(v+1/2, x) * sqrt( 2 / (x*pi)), rtol=1e-12)
@test isapprox(Bessels.sphericalbesseli(v, x), SpecialFunctions.besseli(v+1/2, x) * sqrt( pi / (x*2)), rtol=1e-12)
end

@test isapprox(Bessels.sphericalbessely(270, 240.0), SpecialFunctions.sphericalbessely(270, 240.0), rtol=3e-12)
Expand Down

0 comments on commit abc819f

Please sign in to comment.