Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix gguf loading via Transformers #2596

Merged
merged 5 commits into from
Jan 7, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 21 additions & 8 deletions lm_eval/models/huggingface.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ def __init__(
delta: Optional[str] = None,
autogptq: Optional[Union[bool, str]] = False,
gptqmodel: Optional[bool] = False,
gguf_file: Optional[str] = None,
**kwargs,
) -> None:
super().__init__()
Expand Down Expand Up @@ -164,6 +165,7 @@ def __init__(
pretrained,
revision=revision,
trust_remote_code=trust_remote_code,
gguf_file=gguf_file,
)

# determine which of 'causal' and 'seq2seq' backends to use for HF models
Expand All @@ -178,6 +180,7 @@ def __init__(
revision=revision,
trust_remote_code=trust_remote_code,
use_fast_tokenizer=use_fast_tokenizer,
gguf_file=gguf_file,
)

# if we passed `pretrained` as a string, initialize our model now
Expand All @@ -196,6 +199,7 @@ def __init__(
delta=delta,
autogptq=autogptq,
gptqmodel=gptqmodel,
gguf_file=gguf_file,
**kwargs,
)

Expand Down Expand Up @@ -508,12 +512,14 @@ def _get_config(
pretrained: str,
revision: str = "main",
trust_remote_code: bool = False,
gguf_file: Optional[str] = None,
) -> None:
"""Return the model config for HuggingFace models"""
self._config = transformers.AutoConfig.from_pretrained(
pretrained,
revision=revision,
trust_remote_code=trust_remote_code,
gguf_file=gguf_file,
)

def _create_model(
Expand All @@ -535,6 +541,7 @@ def _create_model(
delta: Optional[str] = None,
autogptq: Optional[Union[bool, str]] = False,
gptqmodel: Optional[bool] = False,
gguf_file: Optional[str] = None,
**kwargs,
) -> None:
"""
Expand Down Expand Up @@ -579,6 +586,7 @@ def _create_model(
revision=revision,
torch_dtype=get_dtype(dtype),
trust_remote_code=trust_remote_code,
gguf_file=gguf_file,
**model_kwargs,
)
else:
Expand Down Expand Up @@ -676,21 +684,29 @@ def _create_tokenizer(
revision: Optional[str] = "main",
trust_remote_code: Optional[bool] = False,
use_fast_tokenizer: Optional[bool] = True,
gguf_file: Optional[str] = None,
) -> None:
"""
Helper method during initialization.

Create a tokenizer object corresponding to the correct
tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
"""
kwargs = {
"revision": revision,
"trust_remote_code": trust_remote_code,
}

# gguf format embeds tokenizer and is not compatible with hf tokenizer `use_fast` param
if gguf_file is not None:
kwargs["gguf_file"] = gguf_file
else:
kwargs["use_fast"] = use_fast_tokenizer

if tokenizer:
if isinstance(tokenizer, str):
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
tokenizer,
revision=revision,
trust_remote_code=trust_remote_code,
use_fast=use_fast_tokenizer,
tokenizer, **kwargs
)
else:
assert isinstance(
Expand All @@ -705,10 +721,7 @@ def _create_tokenizer(
# get the HF hub name via accessor on model
model_name = self.model.name_or_path
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
use_fast=use_fast_tokenizer,
model_name, **kwargs
)
return None

Expand Down
Loading