-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
672 lines (588 loc) · 28.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
# encoding: utf-8
"""
@author: yangguang
@contact: [email protected]
@file: main.py
@time: 2019/4/24 19:28
"""
import sys
import os
import numpy as np
import cv2
import tensorflow as tf
from sklearn.model_selection import train_test_split
"""
使用方法:
· 训练时,使626行 train_flag = 1
· 测试时,使626行 train_flag = 0
然后直接运行
"""
# os.environ['CUDA_VISIBLE_DEVICES'] = '6'
numbers = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
alphbets = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T',
'U', 'V', 'W', 'X', 'Y', 'Z']
chinese = ['川', '鄂', '赣', '甘', '贵', '桂', '黑', '沪', '冀', '津',
'京', '吉', '辽', '鲁', '蒙', '闽', '宁', '青', '琼',
'陕', '苏', '晋', '皖', '湘', '新', '豫', '渝', '粤', '云',
'藏', '浙']
class char_cnn_net:
def __init__(self):
self.dataset = numbers + alphbets + chinese
self.dataset_len = len(self.dataset)
self.img_size = 20
self.y_size = len(self.dataset)
self.batch_size = 100
self.x_place = tf.placeholder(dtype=tf.float32, shape=[None, self.img_size, self.img_size], name='x_place')
self.y_place = tf.placeholder(dtype=tf.float32, shape=[None, self.y_size], name='y_place')
self.keep_place = tf.placeholder(dtype=tf.float32, name='keep_place')
def hist_image(self, img):
assert img.ndim == 2
hist = [0 for i in range(256)]
img_h, img_w = img.shape[0], img.shape[1]
for row in range(img_h):
for col in range(img_w):
hist[img[row, col]] += 1
p = [hist[n] / (img_w * img_h) for n in range(256)]
p1 = np.cumsum(p)
for row in range(img_h):
for col in range(img_w):
v = img[row, col]
img[row, col] = p1[v] * 255
return img
def find_board_area(self, img):
assert img.ndim == 2
img_h, img_w = img.shape[0], img.shape[1]
top, bottom, left, right = 0, img_h, 0, img_w
flag = False
h_proj = [0 for i in range(img_h)]
v_proj = [0 for i in range(img_w)]
for row in range(round(img_h * 0.5), round(img_h * 0.8), 3):
for col in range(img_w):
if img[row, col] == 255:
h_proj[row] += 1
if flag == False and h_proj[row] > 12:
flag = True
top = row
if flag == True and row > top + 8 and h_proj[row] < 12:
bottom = row
flag = False
for col in range(round(img_w * 0.3), img_w, 1):
for row in range(top, bottom, 1):
if img[row, col] == 255:
v_proj[col] += 1
if flag == False and (v_proj[col] > 10 or v_proj[col] - v_proj[col - 1] > 5):
left = col
break
return left, top, 120, bottom - top - 10
def verify_scale(self, rotate_rect):
error = 0.4
aspect = 4 # 4.7272
min_area = 10 * (10 * aspect)
max_area = 150 * (150 * aspect)
min_aspect = aspect * (1 - error)
max_aspect = aspect * (1 + error)
theta = 30
# 宽或高为0,不满足矩形直接返回False
if rotate_rect[1][0] == 0 or rotate_rect[1][1] == 0:
return False
r = rotate_rect[1][0] / rotate_rect[1][1]
r = max(r, 1 / r)
area = rotate_rect[1][0] * rotate_rect[1][1]
if area > min_area and area < max_area and r > min_aspect and r < max_aspect:
# 矩形的倾斜角度在不超过theta
if ((rotate_rect[1][0] < rotate_rect[1][1] and rotate_rect[2] >= -90 and rotate_rect[2] < -(90 - theta)) or
(rotate_rect[1][1] < rotate_rect[1][0] and rotate_rect[2] > -theta and rotate_rect[2] <= 0)):
return True
return False
def img_Transform(self, car_rect, image):
img_h, img_w = image.shape[:2]
rect_w, rect_h = car_rect[1][0], car_rect[1][1]
angle = car_rect[2]
return_flag = False
if car_rect[2] == 0:
return_flag = True
if car_rect[2] == -90 and rect_w < rect_h:
rect_w, rect_h = rect_h, rect_w
return_flag = True
if return_flag:
car_img = image[int(car_rect[0][1] - rect_h / 2):int(car_rect[0][1] + rect_h / 2),
int(car_rect[0][0] - rect_w / 2):int(car_rect[0][0] + rect_w / 2)]
return car_img
car_rect = (car_rect[0], (rect_w, rect_h), angle)
box = cv2.boxPoints(car_rect)
heigth_point = right_point = [0, 0]
left_point = low_point = [car_rect[0][0], car_rect[0][1]]
for point in box:
if left_point[0] > point[0]:
left_point = point
if low_point[1] > point[1]:
low_point = point
if heigth_point[1] < point[1]:
heigth_point = point
if right_point[0] < point[0]:
right_point = point
if left_point[1] <= right_point[1]: # 正角度
new_right_point = [right_point[0], heigth_point[1]]
pts1 = np.float32([left_point, heigth_point, right_point])
pts2 = np.float32([left_point, heigth_point, new_right_point]) # 字符只是高度需要改变
M = cv2.getAffineTransform(pts1, pts2)
dst = cv2.warpAffine(image, M, (round(img_w * 2), round(img_h * 2)))
car_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
elif left_point[1] > right_point[1]: # 负角度
new_left_point = [left_point[0], heigth_point[1]]
pts1 = np.float32([left_point, heigth_point, right_point])
pts2 = np.float32([new_left_point, heigth_point, right_point]) # 字符只是高度需要改变
M = cv2.getAffineTransform(pts1, pts2)
dst = cv2.warpAffine(image, M, (round(img_w * 2), round(img_h * 2)))
car_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
return car_img
def pre_process(self, orig_img):
gray_img = cv2.cvtColor(orig_img, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray_img', gray_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
blur_img = cv2.blur(gray_img, (3, 3))
cv2.imshow('blur', blur_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
sobel_img = cv2.Sobel(blur_img, cv2.CV_16S, 1, 0, ksize=3)
sobel_img = cv2.convertScaleAbs(sobel_img)
cv2.imshow('sobel', sobel_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
hsv_img = cv2.cvtColor(orig_img, cv2.COLOR_BGR2HSV)
h, s, v = hsv_img[:, :, 0], hsv_img[:, :, 1], hsv_img[:, :, 2]
# 黄色色调区间[26,34],蓝色色调区间:[100,124]
blue_img = (((h > 26) & (h < 34)) | ((h > 100) & (h < 124))) & (s > 70) & (v > 70)
blue_img = blue_img.astype('float32')
mix_img = np.multiply(sobel_img, blue_img)
cv2.imshow('mix', mix_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
mix_img = mix_img.astype(np.uint8)
ret, binary_img = cv2.threshold(mix_img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
cv2.imshow('binary',binary_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 5))
close_img = cv2.morphologyEx(binary_img, cv2.MORPH_CLOSE, kernel)
cv2.imshow('close', close_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
return close_img
# 给候选车牌区域做漫水填充算法,一方面补全上一步求轮廓可能存在轮廓歪曲的问题,
# 另一方面也可以将非车牌区排除掉
def verify_color(self, rotate_rect, src_image):
img_h, img_w = src_image.shape[:2]
mask = np.zeros(shape=[img_h + 2, img_w + 2], dtype=np.uint8)
connectivity = 4 # 种子点上下左右4邻域与种子颜色值在[loDiff,upDiff]的被涂成new_value,也可设置8邻域
loDiff, upDiff = 30, 30
new_value = 255
flags = connectivity
flags |= cv2.FLOODFILL_FIXED_RANGE # 考虑当前像素与种子象素之间的差,不设置的话则和邻域像素比较
flags |= new_value << 8
flags |= cv2.FLOODFILL_MASK_ONLY # 设置这个标识符则不会去填充改变原始图像,而是去填充掩模图像(mask)
rand_seed_num = 5000 # 生成多个随机种子
valid_seed_num = 200 # 从rand_seed_num中随机挑选valid_seed_num个有效种子
adjust_param = 0.1
box_points = cv2.boxPoints(rotate_rect)
box_points_x = [n[0] for n in box_points]
box_points_x.sort(reverse=False)
adjust_x = int((box_points_x[2] - box_points_x[1]) * adjust_param)
col_range = [box_points_x[1] + adjust_x, box_points_x[2] - adjust_x]
box_points_y = [n[1] for n in box_points]
box_points_y.sort(reverse=False)
adjust_y = int((box_points_y[2] - box_points_y[1]) * adjust_param)
row_range = [box_points_y[1] + adjust_y, box_points_y[2] - adjust_y]
# 如果以上方法种子点在水平或垂直方向可移动的范围很小,则采用旋转矩阵对角线来设置随机种子点
if (col_range[1] - col_range[0]) / (box_points_x[3] - box_points_x[0]) < 0.4 \
or (row_range[1] - row_range[0]) / (box_points_y[3] - box_points_y[0]) < 0.4:
points_row = []
points_col = []
for i in range(2):
pt1, pt2 = box_points[i], box_points[i + 2]
x_adjust, y_adjust = int(adjust_param * (abs(pt1[0] - pt2[0]))), int(
adjust_param * (abs(pt1[1] - pt2[1])))
if (pt1[0] <= pt2[0]):
pt1[0], pt2[0] = pt1[0] + x_adjust, pt2[0] - x_adjust
else:
pt1[0], pt2[0] = pt1[0] - x_adjust, pt2[0] + x_adjust
if (pt1[1] <= pt2[1]):
pt1[1], pt2[1] = pt1[1] + adjust_y, pt2[1] - adjust_y
else:
pt1[1], pt2[1] = pt1[1] - y_adjust, pt2[1] + y_adjust
temp_list_x = [int(x) for x in np.linspace(pt1[0], pt2[0], int(rand_seed_num / 2))]
temp_list_y = [int(y) for y in np.linspace(pt1[1], pt2[1], int(rand_seed_num / 2))]
points_col.extend(temp_list_x)
points_row.extend(temp_list_y)
else:
points_row = np.random.randint(row_range[0], row_range[1], size=rand_seed_num)
points_col = np.linspace(col_range[0], col_range[1], num=rand_seed_num).astype(np.int)
points_row = np.array(points_row)
points_col = np.array(points_col)
hsv_img = cv2.cvtColor(src_image, cv2.COLOR_BGR2HSV)
h, s, v = hsv_img[:, :, 0], hsv_img[:, :, 1], hsv_img[:, :, 2]
# 将随机生成的多个种子依次做漫水填充,理想情况是整个车牌被填充
flood_img = src_image.copy()
seed_cnt = 0
for i in range(rand_seed_num):
rand_index = np.random.choice(rand_seed_num, 1, replace=False)
row, col = points_row[rand_index], points_col[rand_index]
# 限制随机种子必须是车牌背景色
if (((h[row, col] > 26) & (h[row, col] < 34)) | ((h[row, col] > 100) & (h[row, col] < 124))) & (
s[row, col] > 70) & (v[row, col] > 70):
cv2.floodFill(src_image, mask, (col, row), (255, 255, 255), (loDiff,) * 3, (upDiff,) * 3, flags)
cv2.circle(flood_img, center=(col, row), radius=2, color=(0, 0, 255), thickness=2)
seed_cnt += 1
if seed_cnt >= valid_seed_num:
break
# ======================调试用======================#
# show_seed = np.random.uniform(1, 100, 1).astype(np.uint16)
# cv2.imshow('floodfill' + str(show_seed), flood_img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# cv2.imshow('flood_mask' + str(show_seed), mask)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# ======================调试用======================#
# 获取掩模上被填充点的像素点,并求点集的最小外接矩形
mask_points = []
for row in range(1, img_h + 1):
for col in range(1, img_w + 1):
if mask[row, col] != 0:
mask_points.append((col - 1, row - 1))
mask_rotateRect = cv2.minAreaRect(np.array(mask_points))
if self.verify_scale(mask_rotateRect):
return True, mask_rotateRect
else:
return False, mask_rotateRect
# 车牌定位
def locate_carPlate(self, orig_img, pred_image):
carPlate_list = []
temp1_orig_img = orig_img.copy() # 调试用
temp2_orig_img = orig_img.copy() # 调试用
cloneImg, contours, heriachy = cv2.findContours(pred_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for i, contour in enumerate(contours):
cv2.drawContours(temp1_orig_img, contours, i, (0, 255, 255), 2)
# 获取轮廓最小外接矩形,返回值rotate_rect
rotate_rect = cv2.minAreaRect(contour)
# 根据矩形面积大小和长宽比判断是否是车牌
if self.verify_scale(rotate_rect):
ret, rotate_rect2 = self.verify_color(rotate_rect, temp2_orig_img)
if ret == False:
continue
# 车牌位置矫正
car_plate = self.img_Transform(rotate_rect2, temp2_orig_img)
car_plate = cv2.resize(car_plate, (car_plate_w, car_plate_h)) # 调整尺寸为后面CNN车牌识别做准备
cv2.imshow('car_plate', car_plate)
cv2.waitKey(0)
cv2.destroyAllWindows()
# ========================调试看效果========================#
box = cv2.boxPoints(rotate_rect2)
for k in range(4):
n1, n2 = k % 4, (k + 1) % 4
cv2.line(temp1_orig_img, (box[n1][0], box[n1][1]), (box[n2][0], box[n2][1]), (255, 0, 0), 2)
cv2.imwrite(os.path.join(car_plate_dir, 'plate_down.jpg'), car_plate)
return carPlate_list
# 左右切割
def horizontal_cut_chars(self, plate):
char_addr_list = []
area_left, area_right, char_left, char_right = 0, 0, 0, 0
img_w = plate.shape[1]
# 获取车牌每列边缘像素点个数
def getColSum(img, col):
sum = 0
for i in range(img.shape[0]):
sum += round(img[i, col] / 255)
return sum
sum = 0
for col in range(img_w):
sum += getColSum(plate, col)
# 每列边缘像素点必须超过均值的60%才能判断属于字符区域
col_limit = 0 # round(0.5*sum/img_w)
# 每个字符宽度也进行限制
charWid_limit = [round(img_w / 12), round(img_w / 5)]
is_char_flag = False
for i in range(img_w):
colValue = getColSum(plate, i)
if colValue > col_limit:
if is_char_flag == False:
area_right = round((i + char_right) / 2)
area_width = area_right - area_left
char_width = char_right - char_left
if (area_width > charWid_limit[0]) and (area_width < charWid_limit[1]):
char_addr_list.append((area_left, area_right, char_width))
char_left = i
area_left = round((char_left + char_right) / 2)
is_char_flag = True
else:
if is_char_flag == True:
char_right = i - 1
is_char_flag = False
# 手动结束最后未完成的字符分割
if area_right < char_left:
area_right, char_right = img_w, img_w
area_width = area_right - area_left
char_width = char_right - char_left
if (area_width > charWid_limit[0]) and (area_width < charWid_limit[1]):
char_addr_list.append((area_left, area_right, char_width))
return char_addr_list
def get_chars(self, car_plate):
img_h, img_w = car_plate.shape[:2]
h_proj_list = [] # 水平投影长度列表
h_temp_len, v_temp_len = 0, 0
h_startIndex, h_end_index = 0, 0 # 水平投影记索引
h_proj_limit = [0.2, 0.8] # 车牌在水平方向得轮廓长度少于20%或多余80%过滤掉
char_imgs = []
# 将二值化的车牌水平投影到Y轴,计算投影后的连续长度,连续投影长度可能不止一段
h_count = [0 for i in range(img_h)]
for row in range(img_h):
temp_cnt = 0
for col in range(img_w):
if car_plate[row, col] == 255:
temp_cnt += 1
h_count[row] = temp_cnt
if temp_cnt / img_w < h_proj_limit[0] or temp_cnt / img_w > h_proj_limit[1]:
if h_temp_len != 0:
h_end_index = row - 1
h_proj_list.append((h_startIndex, h_end_index))
h_temp_len = 0
continue
if temp_cnt > 0:
if h_temp_len == 0:
h_startIndex = row
h_temp_len = 1
else:
h_temp_len += 1
else:
if h_temp_len > 0:
h_end_index = row - 1
h_proj_list.append((h_startIndex, h_end_index))
h_temp_len = 0
# 手动结束最后得水平投影长度累加
if h_temp_len != 0:
h_end_index = img_h - 1
h_proj_list.append((h_startIndex, h_end_index))
# 选出最长的投影,该投影长度占整个截取车牌高度的比值必须大于0.5
h_maxIndex, h_maxHeight = 0, 0
for i, (start, end) in enumerate(h_proj_list):
if h_maxHeight < (end - start):
h_maxHeight = (end - start)
h_maxIndex = i
if h_maxHeight / img_h < 0.5:
return char_imgs
chars_top, chars_bottom = h_proj_list[h_maxIndex][0], h_proj_list[h_maxIndex][1]
plates = car_plate[chars_top:chars_bottom + 1, :]
cv2.imshow('car_plate', car_plate)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imshow('plate', plates)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite(os.path.join(base_dir, 'plate/car.jpg'), car_plate)
# cv2.imwrite('/home/yangguang/Projects/CarPlateIdentity-master/plate/car.jpg', car_plate)
cv2.imwrite(os.path.join(base_dir, 'plate/plates.jpg'), plates)
# cv2.imwrite('/home/yangguang/Projects/CarPlateIdentity-master/plate/plate.jpg', plates)
char_addr_list = self.horizontal_cut_chars(plates)
for i, addr in enumerate(char_addr_list):
char_img = car_plate[chars_top:chars_bottom + 1, addr[0]:addr[1]]
char_img = cv2.resize(char_img, (char_w, char_h))
cv2.imwrite(os.path.join(base_dir, 'cut', str(i) + '.jpg') , char_img)
return char_imgs
def extract_char(self, car_plate):
gray_plate = cv2.cvtColor(car_plate, cv2.COLOR_BGR2GRAY)
ret, binary_plate = cv2.threshold(gray_plate, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
char_img_list = self.get_chars(binary_plate)
# return char_img_list
# 创建网络
def cnn_construct(self):
# 将输入reshape成 20 * 20 * 1
x_input = tf.reshape(self.x_place, shape=[-1, 20, 20, 1])
# (卷积层 + 池化层 + dropout层)* 1
cw1 = tf.Variable(tf.random_normal(shape=[3, 3, 1, 32], stddev=0.01), dtype=tf.float32)
cb1 = tf.Variable(tf.random_normal(shape=[32]), dtype=tf.float32)
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x_input, filter=cw1, strides=[1, 1, 1, 1], padding='SAME'), cb1))
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv1 = tf.nn.dropout(conv1, self.keep_place)
# (卷积层 + 池化层 + dropout层)* 2
cw2 = tf.Variable(tf.random_normal(shape=[3, 3, 32, 64], stddev=0.01), dtype=tf.float32)
cb2 = tf.Variable(tf.random_normal(shape=[64]), dtype=tf.float32)
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, filter=cw2, strides=[1, 1, 1, 1], padding='SAME'), cb2))
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(conv2, self.keep_place)
# (卷积层 + 池化层 + dropout层)* 3
cw3 = tf.Variable(tf.random_normal(shape=[3, 3, 64, 128], stddev=0.01), dtype=tf.float32)
cb3 = tf.Variable(tf.random_normal(shape=[128]), dtype=tf.float32)
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, filter=cw3, strides=[1, 1, 1, 1], padding='SAME'), cb3))
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(conv3, self.keep_place)
# 将输出reshape成 3 * 3 * 128
conv_out = tf.reshape(conv3, shape=[-1, 3 * 3 * 128])
# 3层全连接层
# 第一层 node = 1024
fw1 = tf.Variable(tf.random_normal(shape=[3 * 3 * 128, 1024], stddev=0.01), dtype=tf.float32)
fb1 = tf.Variable(tf.random_normal(shape=[1024]), dtype=tf.float32)
fully1 = tf.nn.relu(tf.add(tf.matmul(conv_out, fw1), fb1))
fully1 = tf.nn.dropout(fully1, self.keep_place)
# 第二层 node = 1024
fw2 = tf.Variable(tf.random_normal(shape=[1024, 1024], stddev=0.01), dtype=tf.float32)
fb2 = tf.Variable(tf.random_normal(shape=[1024]), dtype=tf.float32)
fully2 = tf.nn.relu(tf.add(tf.matmul(fully1, fw2), fb2))
fully2 = tf.nn.dropout(fully2, self.keep_place)
# 第三层 node = 类别数
fw3 = tf.Variable(tf.random_normal(shape=[1024, self.dataset_len], stddev=0.01), dtype=tf.float32)
fb3 = tf.Variable(tf.random_normal(shape=[self.dataset_len]), dtype=tf.float32)
fully3 = tf.add(tf.matmul(fully2, fw3), fb3, name='out_put')
# 输出预测值
return fully3
# 训练模型
def train(self, data_dir, save_model_path):
print('读取训练数据集:')
X, y = self.init_data(data_dir)
print('成功读取 ' + str(len(y)) + ' 个数据')
train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=0)
# CNN最后一个全连接层的输出
out_put = self.cnn_construct()
# 使用softmax得到预测分数,并找到预测分数最高的标签
predicts = tf.nn.softmax(out_put)
predicts = tf.argmax(predicts, axis=1)
# 得到原始样本真正的标签
actual_y = tf.argmax(self.y_place, axis=1)
# 求准确率
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicts, actual_y), dtype=tf.float32))
# 设置损失函数,并设置优化器
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out_put, labels=self.y_place))
opt = tf.train.AdamOptimizer(learning_rate=0.001)
# 最小化损失函数
train_step = opt.minimize(cost)
# 开始绘画
with tf.Session() as sess:
# 初始化参数
init = tf.global_variables_initializer()
sess.run(init)
step = 0
saver = tf.train.Saver()
# 循环
while True:
train_index = np.random.choice(len(train_x), self.batch_size, replace=False)
train_randx = train_x[train_index]
train_randy = train_y[train_index]
_, loss = sess.run([train_step, cost],
feed_dict={self.x_place: train_randx, self.y_place: train_randy,
self.keep_place: 0.75})
step += 1
if step % 10 == 0:
test_index = np.random.choice(len(test_x), self.batch_size, replace=False)
test_randx = test_x[test_index]
test_randy = test_y[test_index]
acc = sess.run(accuracy, feed_dict={self.x_place: test_randx, self.y_place: test_randy,
self.keep_place: 1.0})
print(step, loss)
if step % 50 == 0:
print('accuracy:' + str(acc))
if step % 500 == 0:
saver.save(sess, save_model_path, global_step=step)
break
# if acc > 0.99 and step > 500:
# saver.save(sess, save_model_path, global_step=step)
# break
def test(self, x_images, model_path):
text_list = []
out_put = self.cnn_construct()
predicts = tf.nn.softmax(out_put)
predicts = tf.argmax(predicts, axis=1)
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver.restore(sess, model_path)
preds = sess.run(predicts, feed_dict={self.x_place: x_images, self.keep_place: 1.0})
for i in range(len(preds)):
pred = preds[i].astype(int)
text_list.append(self.dataset[pred])
return text_list
def list_all_files(self, root):
files = []
list = os.listdir(root)
for i in range(len(list)):
element = os.path.join(root, list[i])
if os.path.isdir(element):
temp_dir = os.path.split(element)[-1]
if temp_dir in self.dataset:
files.extend(self.list_all_files(element))
elif os.path.isfile(element):
files.append(element)
return files
def init_testData(self, dir):
test_X = []
if not os.path.exists(test_dir):
raise ValueError('没有找到文件夹')
for i in range(0, 7):
fname = os.path.join(dir, str(i) + '.jpg')
src_img = cv2.imread(fname, cv2.COLOR_BGR2GRAY)
if src_img.ndim == 3:
continue
resize_img = cv2.resize(src_img, (20, 20))
test_X.append(resize_img)
test_X = np.array(test_X)
return test_X
def init_data(self, dir):
X = []
y = []
if not os.path.exists(data_dir):
raise ValueError('没有找到文件夹')
files = self.list_all_files(dir)
for file in files:
src_img = cv2.imread(file, cv2.COLOR_BGR2GRAY)
if src_img.ndim == 3:
continue
resize_img = cv2.resize(src_img, (20, 20))
X.append(resize_img)
# 获取图片文件全目录
dir = os.path.dirname(file)
# 获取图片文件上一级目录名
dir_name = os.path.split(dir)[-1]
vector_y = [0 for i in range(len(self.dataset))]
index_y = self.dataset.index(dir_name)
vector_y[index_y] = 1
y.append(vector_y)
X = np.array(X)
y = np.array(y).reshape(-1, self.dataset_len)
return X, y
if __name__ == '__main__':
# 训练模型设为1,测试模型设为0
train_flag = 0
# 车牌宽高
car_plate_w, car_plate_h = 136, 36
# 字符宽高
char_w, char_h = 20, 20
base_dir = 'C:/Users/yangguang/PycharmProjects/CarPlateIdentity-master'
# 训练数据集
data_dir = os.path.join(base_dir, 'images/cnn_char_train')
# 测试数据集
test_dir = os.path.join(base_dir, 'cut')
# 模型保存路径
train_model_path = os.path.join(base_dir, 'model/char/model.ckpt')
# 模型读取路径
model_path = os.path.join(base_dir, 'model/char/model.ckpt-520')
# 读取自然车牌图片
img = cv2.imread(os.path.join(base_dir, 'images/pictures/10.jpg'))
# 载入class
net = char_cnn_net()
# 预处理图片找到车牌位置'
pred_img = net.pre_process(img)
# 车牌保存路径
car_plate_dir = os.path.join(base_dir, 'plate')
# 车牌定位
car_plate_list = net.locate_carPlate(img, pred_img)
# 读取处理后的车牌
car_plate = cv2.imread(os.path.join(car_plate_dir, 'plate_down.jpg'))
# 字符分割
net.extract_char(car_plate)
if train_flag == 1:
# 训练模型
net.train(data_dir, train_model_path)
else:
# 测试部分
test_X = net.init_testData(test_dir)
text = net.test(test_X, model_path)
print('车牌号为 ' + str(text))