forked from Yueeeeeeee/BERT4NILM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
124 lines (101 loc) · 3.95 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import random
import numpy as np
import torch
import torch.utils.data as data_utils
torch.set_default_tensor_type(torch.DoubleTensor)
class NILMDataloader():
def __init__(self, args, dataset, bert=False):
self.args = args
self.mask_prob = args.mask_prob
self.batch_size = args.batch_size
if bert:
self.train_dataset, self.val_dataset = dataset.get_bert_datasets(mask_prob=self.mask_prob)
else:
self.train_dataset, self.val_dataset = dataset.get_datasets()
@classmethod
def code(cls):
return 'dataloader'
def get_dataloaders(self):
train_loader = self._get_loader(self.train_dataset)
val_loader = self._get_loader(self.val_dataset)
return train_loader, val_loader
def _get_loader(self, dataset):
dataloader = data_utils.DataLoader(
dataset, batch_size=self.batch_size, shuffle=False, pin_memory=True)
return dataloader
class NILMDataset(data_utils.Dataset):
def __init__(self, x, y, status, window_size=480, stride=30):
self.x = x
self.y = y
self.status = status
self.window_size = window_size
self.stride = stride
def __len__(self):
return int(np.ceil((len(self.x) - self.window_size) / self.stride) + 1)
def __getitem__(self, index):
start_index = index * self.stride
end_index = np.min(
(len(self.x), index * self.stride + self.window_size))
x = self.padding_seqs(self.x[start_index: end_index])
y = self.padding_seqs(self.y[start_index: end_index])
status = self.padding_seqs(self.status[start_index: end_index])
return torch.tensor(x), torch.tensor(y), torch.tensor(status)
def padding_seqs(self, in_array):
if len(in_array) == self.window_size:
return in_array
try:
out_array = np.zeros((self.window_size, in_array.shape[1]))
except:
out_array = np.zeros(self.window_size)
length = len(in_array)
out_array[:length] = in_array
return out_array
class BERTDataset(data_utils.Dataset):
def __init__(self, x, y, status, window_size=480, stride=30, mask_prob=0.2):
self.x = x
self.y = y
self.status = status
self.window_size = window_size
self.stride = stride
self.mask_prob = mask_prob
self.columns = y.shape[1]
def __len__(self):
return int(np.ceil((len(self.x) - self.window_size) / self.stride) + 1)
def __getitem__(self, index):
start_index = index * self.stride
end_index = np.min(
(len(self.x), index * self.stride + self.window_size))
x = self.padding_seqs(self.x[start_index: end_index])
y = self.padding_seqs(self.y[start_index: end_index])
status = self.padding_seqs(self.status[start_index: end_index])
tokens = []
labels = []
on_offs = []
for i in range(len(x)):
prob = random.random()
if prob < self.mask_prob:
prob = random.random()
if prob < 0.8:
tokens.append(-1)
elif prob < 0.9:
tokens.append(np.random.normal())
else:
tokens.append(x[i])
labels.append(y[i])
on_offs.append(status[i])
else:
tokens.append(x[i])
temp = np.array([-1] * self.columns)
labels.append(temp)
on_offs.append(temp)
return torch.tensor(tokens), torch.tensor(labels), torch.tensor(on_offs)
def padding_seqs(self, in_array):
if len(in_array) == self.window_size:
return in_array
try:
out_array = np.zeros((self.window_size, in_array.shape[1]))
except:
out_array = np.zeros(self.window_size)
length = len(in_array)
out_array[:length] = in_array
return out_array