-
Notifications
You must be signed in to change notification settings - Fork 495
/
Copy pathverify.py
155 lines (132 loc) · 5.55 KB
/
verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0'
import argparse, os, math, time, sys
import mxnet as mx
from mxnet import gluon
from mxnet.gluon.data.vision import transforms
from mxnet.contrib.quantization import *
from resnest.gluon import get_model
from PIL import Image
# CLI
def parse_args():
parser = argparse.ArgumentParser(description='Train a model for image classification.')
parser.add_argument('--data-dir', type=str, default='~/.encoding/data/ILSVRC2012/',
help='Imagenet directory for validation.')
parser.add_argument('--rec-dir', type=str, default=None,
help='recio directory for validation.')
parser.add_argument('--batch-size', type=int, default=32,
help='training batch size per device (CPU/GPU).')
parser.add_argument('--num-gpus', type=int, default=8,
help='number of gpus to use.')
parser.add_argument('-j', '--num-data-workers', dest='num_workers', default=32, type=int,
help='number of preprocessing workers')
parser.add_argument('--model', type=str, default='model', required=False,
help='type of model to use. see vision_model for options.')
parser.add_argument('--resume', type=str, default=None,
help='put the path to resuming file if needed')
parser.add_argument('--crop-size', type=int, default=224,
help='input shape of the image, default is 224.')
parser.add_argument('--crop-ratio', type=float, default=0.875,
help='The ratio for crop and input size, for validation dataset only')
parser.add_argument('--dtype', type=str,
help='training data type')
parser.add_argument('--dilation', type=int, default=1,
help='network dilation. default 1 (no-dilation)')
opt = parser.parse_args()
return opt
def test(network, ctx, val_data, batch_fn):
acc_top1 = mx.metric.Accuracy()
acc_top5 = mx.metric.TopKAccuracy(5)
acc_top1.reset()
acc_top5.reset()
num_batch = len(val_data)
num = 0
start = time.time()
iterator = enumerate(val_data)
next_i, next_batch = next(iterator)
next_data, next_label = batch_fn(next_batch, ctx)
stop = False
while not stop:
i = next_i
data = next_data
label = next_label
outputs = [network(X.astype(opt.dtype, copy=False)) for X in data]
try:
next_i, next_batch = next(iterator)
next_data, next_label = batch_fn(next_batch, ctx)
if next_i == 5:
# warm-up
num = 0
mx.nd.waitall()
start = time.time()
except StopIteration:
stop = True
acc_top1.update(label, outputs)
acc_top5.update(label, outputs)
_, top1 = acc_top1.get()
_, top5 = acc_top5.get()
print('%d / %d : %.8f, %.8f'%(i, num_batch, 1-top1, 1-top5))
num += batch_size
end = time.time()
speed = num / (end - start)
print('Throughput is %f img/sec.'% speed)
_, top1 = acc_top1.get()
_, top5 = acc_top5.get()
return (1-top1, 1-top5)
if __name__ == '__main__':
opt = parse_args()
batch_size = opt.batch_size
classes = 1000
num_gpus = opt.num_gpus
if num_gpus > 0:
batch_size *= num_gpus
ctx = [mx.gpu(i) for i in range(num_gpus)] if num_gpus > 0 else [mx.cpu()]
num_workers = opt.num_workers
input_size = opt.crop_size
model_name = opt.model
pretrained = True if not opt.resume else False
kwargs = {'ctx': ctx, 'pretrained': pretrained, 'classes': classes}
if opt.dilation > 1:
kwargs['dilation'] = opt.dilation
net = get_model(model_name, **kwargs)
net.cast(opt.dtype)
if opt.resume:
net.load_parameters(opt.resume, ctx=ctx)
else:
net.hybridize()
normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
crop_ratio = opt.crop_ratio if opt.crop_ratio > 0 else 0.875
resize = int(math.ceil(input_size/crop_ratio))
if input_size >= 320:
from resnest.gluon.transforms import ECenterCrop
from resnest.gluon.data_utils import ToPIL, ToNDArray
transform_test = transforms.Compose([
ToPIL(),
ECenterCrop(input_size),
ToNDArray(),
transforms.ToTensor(),
normalize
])
else:
transform_test = transforms.Compose([
transforms.Resize(resize, keep_ratio=True),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
normalize
])
if not opt.rec_dir:
from gluoncv.data import imagenet
val_data = gluon.data.DataLoader(
imagenet.classification.ImageNet(opt.data_dir, train=False).transform_first(transform_test),
batch_size=batch_size, shuffle=False, num_workers=num_workers)
else:
imgrec = os.path.join(opt.rec_dir, 'val.rec')
imgidx = os.path.join(opt.rec_dir, 'val.idx')
val_data = gluon.data.DataLoader(
mx.gluon.data.vision.ImageRecordDataset(imgrec).transform_first(transform_test),
batch_size=batch_size, shuffle=False, num_workers=num_workers)
def batch_fn(batch, ctx):
data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
return data, label
err_top1_val, err_top5_val = test(net, ctx, val_data, batch_fn)
print(err_top1_val, err_top5_val)