-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathsearch.py
240 lines (204 loc) · 8.49 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## Email: [email protected]
## Copyright (c) 2020
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
import os
import copy
import random
import pickle
import logging
import argparse
import importlib
import configparser
from tqdm import tqdm
import torch
import multiprocessing as mp
import multiprocessing.pool
try:
torch.multiprocessing.set_start_method('spawn',force=True)
except RuntimeError:
pass
import torch.nn as nn
from torchvision import transforms
try:
import apex
from apex import amp
except ModuleNotFoundError:
print('please install amp if using float16 training')
import encoding
from encoding.utils import (mkdir, accuracy, AverageMeter, LR_Scheduler)
def get_args():
# data settings
parser = argparse.ArgumentParser(description='RegNet-AutoTorch')
# config files
parser.add_argument('--arch', type=str, default='regnet',
help='network type (default: regnet)')
parser.add_argument('--config-file-folder', type=str, required=True,
help='network model type (default: densenet)')
parser.add_argument('--output-folder', type=str, required=True,
help='network model type (default: densenet)')
# input size
parser.add_argument('--crop-size', type=int, default=224,
help='crop image size')
parser.add_argument('--base-size', type=int, default=None,
help='base image size')
# data
parser.add_argument('--batch-size', type=int, default=128,
help='batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=25,
help='number of epochs to train (default: 600)')
parser.add_argument('--workers', type=int, default=12,
help='dataloader threads')
parser.add_argument('--data-dir', type=str, default=os.path.expanduser('~/.encoding/data'),
help='data location for training')
# training hp
parser.add_argument('--amp', action='store_true',
default=False, help='using amp')
parser.add_argument('--lr', type=float, default=0.1,
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum (default: 0.9)')
parser.add_argument('--wd', type=float, default=5e-5,
help='SGD weight decay (default: 1e-4)')
# AutoTorch
parser.add_argument('--remote-file', type=str, default=None,
help='file to store remote ip addresses (default: None)')
parser.add_argument('--checkname', type=str, default='checkpoint.ag',
help='checkpoint path (default: None)')
parser.add_argument('--resume', action='store_true', default= False,
help='resume from the checkpoint if needed')
parser = parser
args = parser.parse_args()
return args
def write_results(in_config_file, out_config_file, **kwargs):
config = configparser.ConfigParser()
config.read(in_config_file)
for k, v in kwargs.items():
config['net'][k] = str(v)
with open(out_config_file, 'w') as cfg:
config.write(cfg)
def train_network(args, gpu_manager, config_file):
gpu = gpu_manager.request()
print('gpu: {}, cfg: {}'.format(gpu, config_file))
# single gpu training only for evaluating the configurations
arch = importlib.import_module('arch.' + args.arch)
model = arch.config_network(config_file)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.wd)
model.cuda(gpu)
criterion.cuda(gpu)
if args.amp:
model, optimizer = amp.initialize(model, optimizer, opt_level='O2')
# init dataloader
base_size = args.base_size if args.base_size is not None else int(1.0 * args.crop_size / 0.875)
transform = transforms.Compose([
transforms.Resize(base_size),
transforms.CenterCrop(args.crop_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
trainset = encoding.datasets.get_dataset('imagenet', root=args.data_dir,
transform=transform, train=True, download=True)
valset = encoding.datasets.get_dataset('imagenet', root=args.data_dir,
transform=transform, train=False, download=True)
train_loader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, drop_last=True, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
valset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
# lr scheduler
lr_scheduler = LR_Scheduler('cos',
base_lr=args.lr,
num_epochs=args.epochs,
iters_per_epoch=len(train_loader),
quiet=True)
# write results into config file
def train(epoch):
model.train()
top1 = AverageMeter()
for batch_idx, (data, target) in enumerate(train_loader):
lr_scheduler(optimizer, batch_idx, epoch, 0)
data, target = data.cuda(gpu), target.cuda(gpu)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
if args.amp:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
def validate():
model.eval()
top1 = AverageMeter()
for batch_idx, (data, target) in enumerate(val_loader):
data, target = data.cuda(gpu), target.cuda(gpu)
with torch.no_grad():
output = model(data)
acc1 = accuracy(output, target, topk=(1,))
top1.update(acc1[0], data.size(0))
return top1.avg
for epoch in tqdm(range(0, args.epochs)):
train(epoch)
acc = validate()
out_config_file = os.path.join(args.output_folder, os.path.basename(config_file))
write_results(config_file, out_config_file,
accuracy=acc.item(), epochs=args.epochs,
lr=args.lr, wd=args.wd)
gpu_manager.release(gpu)
def get_config_files(folder, overwrite=True):
def is_trained(filename):
# check if this config has been trained
return False
# find all config files in the folder
files = []
for filename in os.listdir(folder):
if filename.endswith(".ini"):
fullname = os.path.join(folder, filename)
if not overwrite and is_trained(fullname): continue
files.append(fullname)
return files
def train_network_map(args):
train_network(*args)
class NoDaemonProcess(mp.Process):
# make 'daemon' attribute always return False
def _get_daemon(self):
return False
def _set_daemon(self, value):
pass
daemon = property(_get_daemon, _set_daemon)
class MyPool(mp.pool.Pool):
Process = NoDaemonProcess
class GPUManager(object):
def __init__(self, ngpus):
self._gpus = mp.Manager().Queue()
for i in range(ngpus):
self._gpus.put(i)
def request(self):
return self._gpus.get()
def release(self, gpu):
self._gpus.put(gpu)
def main():
os.environ['PYTHONWARNINGS'] = 'ignore:semaphore_tracker:UserWarning'
logging.basicConfig(level=logging.DEBUG)
args = get_args()
mkdir(args.output_folder)
config_files = get_config_files(args.config_file_folder)
print(f"len(config_files): {len(config_files)}")
ngpus = torch.cuda.device_count()
gpu_manager = GPUManager(ngpus)
#train_network(args, gpu_manager, config_files[0])
tasks = ([args, gpu_manager, config_file] for i, config_file in enumerate(config_files))
p = MyPool(processes=ngpus)
p.map(train_network_map, tasks)
if __name__ == '__main__':
main()