Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

train_dist #401

Open
soroushmbk opened this issue Jul 7, 2021 · 1 comment
Open

train_dist #401

soroushmbk opened this issue Jul 7, 2021 · 1 comment

Comments

@soroushmbk
Copy link

hi
I trained atten model and I used train_dist file for the training
when I want to test the model using the trained atten model some errors occurred:
can u help me?
untimeError: Error(s) in loading state_dict for ATTEN:
Missing key(s) in state_dict: "pretrained.layer1.0.conv2.weight", "pretrained.layer1.0.bn2.weight", "pretrained.layer1.0.bn2.bias", "pretrained.layer1.0.bn2.running_mean", "pretrained.layer1.0.bn2.running_var", "pretrained.layer1.0.downsample.0.weight", "pretrained.layer1.0.downsample.1.bias", "pretrained.layer1.0.downsample.1.running_mean", "pretrained.layer1.0.downsample.1.running_var", "pretrained.layer1.1.conv2.weight", "pretrained.layer1.1.bn2.weight", "pretrained.layer1.1.bn2.bias", "pretrained.layer1.1.bn2.running_mean", "pretrained.layer1.1.bn2.running_var", "pretrained.layer1.2.conv2.weight", "pretrained.layer1.2.bn2.weight", "pretrained.layer1.2.bn2.bias", "pretrained.layer1.2.bn2.running_mean", "pretrained.layer1.2.bn2.running_var", "pretrained.layer2.0.conv2.weight", "pretrained.layer2.0.bn2.weight", "pretrained.layer2.0.bn2.bias", "pretrained.layer2.0.bn2.running_mean", "pretrained.layer2.0.bn2.running_var", "pretrained.layer2.0.downsample.0.weight", "pretrained.layer2.0.downsample.1.bias", "pretrained.layer2.0.downsample.1.running_mean", "pretrained.layer2.0.downsample.1.running_var", "pretrained.layer2.1.conv2.weight", "pretrained.layer2.1.bn2.weight", "pretrained.layer2.1.bn2.bias", "pretrained.layer2.1.bn2.running_mean", "pretrained.layer2.1.bn2.running_var", "pretrained.layer2.2.conv2.weight", "pretrained.layer2.2.bn2.weight", "pretrained.layer2.2.bn2.bias", "pretrained.layer2.2.bn2.running_mean", "pretrained.layer2.2.bn2.running_var", "pretrained.layer2.3.conv2.weight", "pretrained.layer2.3.bn2.weight", "pretrained.layer2.3.bn2.bias", "pretrained.layer2.3.bn2.running_mean", "pretrained.layer2.3.bn2.running_var", "pretrained.layer3.0.conv2.weight", "pretrained.layer3.0.bn2.weight", "pretrained.layer3.0.bn2.bias", "pretrained.layer3.0.bn2.running_mean", "pretrained.layer3.0.bn2.running_var", "pretrained.layer3.0.downsample.0.weight", "pretrained.layer3.0.downsample.1.bias", "pretrained.layer3.0.downsample.1.running_mean", "pretrained.layer3.0.downsample.1.running_var", "pretrained.layer3.1.conv2.weight", "pretrained.layer3.1.bn2.weight", "pretrained.layer3.1.bn2.bias", "pretrained.layer3.1.bn2.running_mean", "pretrained.layer3.1.bn2.running_var", "pretrained.layer3.2.conv2.weight", "pretrained.layer3.2.bn2.weight", "pretrained.layer3.2.bn2.bias", "pretrained.layer3.2.bn2.running_mean", "pretrained.layer3.2.bn2.running_var", "pretrained.layer3.3.conv2.weight", "pretrained.layer3.3.bn2.weight", "pretrained.layer3.3.bn2.bias", "pretrained.layer3.3.bn2.running_mean", "pretrained.layer3.3.bn2.running_var", "pretrained.layer3.4.conv2.weight", "pretrained.layer3.4.bn2.weight", "pretrained.layer3.4.bn2.bias", "pretrained.layer3.4.bn2.running_mean", "pretrained.layer3.4.bn2.running_var", "pretrained.layer3.5.conv2.weight", "pretrained.layer3.5.bn2.weight", "pretrained.layer3.5.bn2.bias", "pretrained.layer3.5.bn2.running_mean", "pretrained.layer3.5.bn2.running_var", "pretrained.layer4.0.conv2.weight", "pretrained.layer4.0.bn2.weight", "pretrained.layer4.0.bn2.bias", "pretrained.layer4.0.bn2.running_mean", "pretrained.layer4.0.bn2.running_var", "pretrained.layer4.0.downsample.0.weight", "pretrained.layer4.0.downsample.1.bias", "pretrained.layer4.0.downsample.1.running_mean", "pretrained.layer4.0.downsample.1.running_var", "pretrained.layer4.1.conv2.weight", "pretrained.layer4.1.bn2.weight", "pretrained.layer4.1.bn2.bias", "pretrained.layer4.1.bn2.running_mean", "pretrained.layer4.1.bn2.running_var", "pretrained.layer4.2.conv2.weight", "pretrained.layer4.2.bn2.weight", "pretrained.layer4.2.bn2.bias", "pretrained.layer4.2.bn2.running_mean", "pretrained.layer4.2.bn2.running_var".
Unexpected key(s) in state_dict: "pretrained.layer1.0.conv2.conv.weight", "pretrained.layer1.0.conv2.bn0.weight", "pretrained.layer1.0.conv2.bn0.bias", "pretrained.layer1.0.conv2.bn0.running_mean", "pretrained.layer1.0.conv2.bn0.running_var", "pretrained.layer1.0.conv2.bn0.num_batches_tracked", "pretrained.layer1.0.conv2.fc1.weight", "pretrained.layer1.0.conv2.fc1.bias", "pretrained.layer1.0.conv2.bn1.weight", "pretrained.layer1.0.conv2.bn1.bias", "pretrained.layer1.0.conv2.bn1.running_mean", "pretrained.layer1.0.conv2.bn1.running_var", "pretrained.layer1.0.conv2.bn1.num_batches_tracked", "pretrained.layer1.0.conv2.fc2.weight", "pretrained.layer1.0.conv2.fc2.bias", "pretrained.layer1.0.downsample.2.weight", "pretrained.layer1.0.downsample.2.bias", "pretrained.layer1.0.downsample.2.running_mean", "pretrained.layer1.0.downsample.2.running_var", "pretrained.layer1.0.downsample.2.num_batches_tracked", "pretrained.layer1.1.conv2.conv.weight", "pretrained.layer1.1.conv2.bn0.weight", "pretrained.layer1.1.conv2.bn0.bias", "pretrained.layer1.1.conv2.bn0.running_mean", "pretrained.layer1.1.conv2.bn0.running_var", "pretrained.layer1.1.conv2.bn0.num_batches_tracked", "pretrained.layer1.1.conv2.fc1.weight", "pretrained.layer1.1.conv2.fc1.bias", "pretrained.layer1.1.conv2.bn1.weight", "pretrained.layer1.1.conv2.bn1.bias", "pretrained.layer1.1.conv2.bn1.running_mean", "pretrained.layer1.1.conv2.bn1.running_var", "pretrained.layer1.1.conv2.bn1.num_batches_tracked", "pretrained.layer1.1.conv2.fc2.weight", "pretrained.layer1.1.conv2.fc2.bias", "pretrained.layer1.2.conv2.conv.weight", "pretrained.layer1.2.conv2.bn0.weight", "pretrained.layer1.2.conv2.bn0.bias", "pretrained.layer1.2.conv2.bn0.running_mean", "pretrained.layer1.2.conv2.bn0.running_var", "pretrained.layer1.2.conv2.bn0.num_batches_tracked", "pretrained.layer1.2.conv2.fc1.weight", "pretrained.layer1.2.conv2.fc1.bias", "pretrained.layer1.2.conv2.bn1.weight", "pretrained.layer1.2.conv2.bn1.bias", "pretrained.layer1.2.conv2.bn1.running_mean", "pretrained.layer1.2.conv2.bn1.running_var", "pretrained.layer1.2.conv2.bn1.num_batches_tracked", "pretrained.layer1.2.conv2.fc2.weight", "pretrained.layer1.2.conv2.fc2.bias", "pretrained.layer2.0.conv2.conv.weight", "pretrained.layer2.0.conv2.bn0.weight", "pretrained.layer2.0.conv2.bn0.bias", "pretrained.layer2.0.conv2.bn0.running_mean", "pretrained.layer2.0.conv2.bn0.running_var", "pretrained.layer2.0.conv2.bn0.num_batches_tracked", "pretrained.layer2.0.conv2.fc1.weight", "pretrained.layer2.0.conv2.fc1.bias", "pretrained.layer2.0.conv2.bn1.weight", "pretrained.layer2.0.conv2.bn1.bias", "pretrained.layer2.0.conv2.bn1.running_mean", "pretrained.layer2.0.conv2.bn1.running_var", "pretrained.layer2.0.conv2.bn1.num_batches_tracked", "pretrained.layer2.0.conv2.fc2.weight", "pretrained.layer2.0.conv2.fc2.bias", "pretrained.layer2.0.downsample.2.weight", "pretrained.layer2.0.downsample.2.bias", "pretrained.layer2.0.downsample.2.running_mean", "pretrained.layer2.0.downsample.2.running_var", "pretrained.layer2.0.downsample.2.num_batches_tracked", "pretrained.layer2.1.conv2.conv.weight", "pretrained.layer2.1.conv2.bn0.weight", "pretrained.layer2.1.conv2.bn0.bias", "pretrained.layer2.1.conv2.bn0.running_mean", "pretrained.layer2.1.conv2.bn0.running_var", "pretrained.layer2.1.conv2.bn0.num_batches_tracked", "pretrained.layer2.1.conv2.fc1.weight", "pretrained.layer2.1.conv2.fc1.bias", "pretrained.layer2.1.conv2.bn1.weight", "pretrained.layer2.1.conv2.bn1.bias", "pretrained.layer2.1.conv2.bn1.running_mean", "pretrained.layer2.1.conv2.bn1.running_var", "pretrained.layer2.1.conv2.bn1.num_batches_tracked", "pretrained.layer2.1.conv2.fc2.weight", "pretrained.layer2.1.conv2.fc2.bias", "pretrained.layer2.2.conv2.conv.weight", "pretrained.layer2.2.conv2.bn0.weight", "pretrained.layer2.2.conv2.bn0.bias", "pretrained.layer2.2.conv2.bn0.running_mean", "pretrained.layer2.2.conv2.bn0.running_var", "pretrained.layer2.2.conv2.bn0.num_batches_tracked", "pretrained.layer2.2.conv2.fc1.weight", "pretrained.layer2.2.conv2.fc1.bias", "pretrained.layer2.2.conv2.bn1.weight", "pretrained.layer2.2.conv2.bn1.bias", "pretrained.layer2.2.conv2.bn1.running_mean", "pretrained.layer2.2.conv2.bn1.running_var", "pretrained.layer2.2.conv2.bn1.num_batches_tracked", "pretrained.layer2.2.conv2.fc2.weight", "pretrained.layer2.2.conv2.fc2.bias", "pretrained.layer2.3.conv2.conv.weight", "pretrained.layer2.3.conv2.bn0.weight", "pretrained.layer2.3.conv2.bn0.bias", "pretrained.layer2.3.conv2.bn0.running_mean", "pretrained.layer2.3.conv2.bn0.running_var", "pretrained.layer2.3.conv2.bn0.num_batches_tracked", "pretrained.layer2.3.conv2.fc1.weight", "pretrained.layer2.3.conv2.fc1.bias", "pretrained.layer2.3.conv2.bn1.weight", "pretrained.layer2.3.conv2.bn1.bias", "pretrained.layer2.3.conv2.bn1.running_mean", "pretrained.layer2.3.conv2.bn1.running_var", "pretrained.layer2.3.conv2.bn1.num_batches_tracked", "pretrained.layer2.3.conv2.fc2.weight", "pretrained.layer2.3.conv2.fc2.bias", "pretrained.layer3.0.conv2.conv.weight", "pretrained.layer3.0.conv2.bn0.weight", "pretrained.layer3.0.conv2.bn0.bias", "pretrained.layer3.0.conv2.bn0.running_mean", "pretrained.layer3.0.conv2.bn0.running_var", "pretrained.layer3.0.conv2.bn0.num_batches_tracked", "pretrained.layer3.0.conv2.fc1.weight", "pretrained.layer3.0.conv2.fc1.bias", "pretrained.layer3.0.conv2.bn1.weight", "pretrained.layer3.0.conv2.bn1.bias", "pretrained.layer3.0.conv2.bn1.running_mean", "pretrained.layer3.0.conv2.bn1.running_var", "pretrained.layer3.0.conv2.bn1.num_batches_tracked", "pretrained.layer3.0.conv2.fc2.weight", "pretrained.layer3.0.conv2.fc2.bias", "pretrained.layer3.0.downsample.2.weight", "pretrained.layer3.0.downsample.2.bias", "pretrained.layer3.0.downsample.2.running_mean", "pretrained.layer3.0.downsample.2.running_var", "pretrained.layer3.0.downsample.2.num_batches_tracked", "pretrained.layer3.1.conv2.conv.weight", "pretrained.layer3.1.conv2.bn0.weight", "pretrained.layer3.1.conv2.bn0.bias", "pretrained.layer3.1.conv2.bn0.running_mean", "pretrained.layer3.1.conv2.bn0.running_var", "pretrained.layer3.1.conv2.bn0.num_batches_tracked", "pretrained.layer3.1.conv2.fc1.weight", "pretrained.layer3.1.conv2.fc1.bias", "pretrained.layer3.1.conv2.bn1.weight", "pretrained.layer3.1.conv2.bn1.bias", "pretrained.layer3.1.conv2.bn1.running_mean", "pretrained.layer3.1.conv2.bn1.running_var", "pretrained.layer3.1.conv2.bn1.num_batches_tracked", "pretrained.layer3.1.conv2.fc2.weight", "pretrained.layer3.1.conv2.fc2.bias", "pretrained.layer3.2.conv2.conv.weight", "pretrained.layer3.2.conv2.bn0.weight", "pretrained.layer3.2.conv2.bn0.bias", "pretrained.layer3.2.conv2.bn0.running_mean", "pretrained.layer3.2.conv2.bn0.running_var", "pretrained.layer3.2.conv2.bn0.num_batches_tracked", "pretrained.layer3.2.conv2.fc1.weight", "pretrained.layer3.2.conv2.fc1.bias", "pretrained.layer3.2.conv2.bn1.weight", "pretrained.layer3.2.conv2.bn1.bias", "pretrained.layer3.2.conv2.bn1.running_mean", "pretrained.layer3.2.conv2.bn1.running_var", "pretrained.layer3.2.conv2.bn1.num_batches_tracked", "pretrained.layer3.2.conv2.fc2.weight", "pretrained.layer3.2.conv2.fc2.bias", "pretrained.layer3.3.conv2.conv.weight", "pretrained.layer3.3.conv2.bn0.weight", "pretrained.layer3.3.conv2.bn0.bias", "pretrained.layer3.3.conv2.bn0.running_mean", "pretrained.layer3.3.conv2.bn0.running_var", "pretrained.layer3.3.conv2.bn0.num_batches_tracked", "pretrained.layer3.3.conv2.fc1.weight", "pretrained.layer3.3.conv2.fc1.bias", "pretrained.layer3.3.conv2.bn1.weight", "pretrained.layer3.3.conv2.bn1.bias", "pretrained.layer3.3.conv2.bn1.running_mean", "pretrained.layer3.3.conv2.bn1.running_var", "pretrained.layer3.3.conv2.bn1.num_batches_tracked", "pretrained.layer3.3.conv2.fc2.weight", "pretrained.layer3.3.conv2.fc2.bias", "pretrained.layer3.4.conv2.conv.weight", "pretrained.layer3.4.conv2.bn0.weight", "pretrained.layer3.4.conv2.bn0.bias", "pretrained.layer3.4.conv2.bn0.running_mean", "pretrained.layer3.4.conv2.bn0.running_var", "pretrained.layer3.4.conv2.bn0.num_batches_tracked", "pretrained.layer3.4.conv2.fc1.weight", "pretrained.layer3.4.conv2.fc1.bias", "pretrained.layer3.4.conv2.bn1.weight", "pretrained.layer3.4.conv2.bn1.bias", "pretrained.layer3.4.conv2.bn1.running_mean", "pretrained.layer3.4.conv2.bn1.running_var", "pretrained.layer3.4.conv2.bn1.num_batches_tracked", "pretrained.layer3.4.conv2.fc2.weight", "pretrained.layer3.4.conv2.fc2.bias", "pretrained.layer3.5.conv2.conv.weight", "pretrained.layer3.5.conv2.bn0.weight", "pretrained.layer3.5.conv2.bn0.bias", "pretrained.layer3.5.conv2.bn0.running_mean", "pretrained.layer3.5.conv2.bn0.running_var", "pretrained.layer3.5.conv2.bn0.num_batches_tracked", "pretrained.layer3.5.conv2.fc1.weight", "pretrained.layer3.5.conv2.fc1.bias", "pretrained.layer3.5.conv2.bn1.weight", "pretrained.layer3.5.conv2.bn1.bias", "pretrained.layer3.5.conv2.bn1.running_mean", "pretrained.layer3.5.conv2.bn1.running_var", "pretrained.layer3.5.conv2.bn1.num_batches_tracked", "pretrained.layer3.5.conv2.fc2.weight", "pretrained.layer3.5.conv2.fc2.bias", "pretrained.layer4.0.conv2.conv.weight", "pretrained.layer4.0.conv2.bn0.weight", "pretrained.layer4.0.conv2.bn0.bias", "pretrained.layer4.0.conv2.bn0.running_mean", "pretrained.layer4.0.conv2.bn0.running_var", "pretrained.layer4.0.conv2.bn0.num_batches_tracked", "pretrained.layer4.0.conv2.fc1.weight", "pretrained.layer4.0.conv2.fc1.bias", "pretrained.layer4.0.conv2.bn1.weight", "pretrained.layer4.0.conv2.bn1.bias", "pretrained.layer4.0.conv2.bn1.running_mean", "pretrained.layer4.0.conv2.bn1.running_var", "pretrained.layer4.0.conv2.bn1.num_batches_tracked", "pretrained.layer4.0.conv2.fc2.weight", "pretrained.layer4.0.conv2.fc2.bias", "pretrained.layer4.0.downsample.2.weight", "pretrained.layer4.0.downsample.2.bias", "pretrained.layer4.0.downsample.2.running_mean", "pretrained.layer4.0.downsample.2.running_var", "pretrained.layer4.0.downsample.2.num_batches_tracked", "pretrained.layer4.1.conv2.conv.weight", "pretrained.layer4.1.conv2.bn0.weight", "pretrained.layer4.1.conv2.bn0.bias", "pretrained.layer4.1.conv2.bn0.running_mean", "pretrained.layer4.1.conv2.bn0.running_var", "pretrained.layer4.1.conv2.bn0.num_batches_tracked", "pretrained.layer4.1.conv2.fc1.weight", "pretrained.layer4.1.conv2.fc1.bias", "pretrained.layer4.1.conv2.bn1.weight", "pretrained.layer4.1.conv2.bn1.bias", "pretrained.layer4.1.conv2.bn1.running_mean", "pretrained.layer4.1.conv2.bn1.running_var", "pretrained.layer4.1.conv2.bn1.num_batches_tracked", "pretrained.layer4.1.conv2.fc2.weight", "pretrained.layer4.1.conv2.fc2.bias", "pretrained.layer4.2.conv2.conv.weight", "pretrained.layer4.2.conv2.bn0.weight", "pretrained.layer4.2.conv2.bn0.bias", "pretrained.layer4.2.conv2.bn0.running_mean", "pretrained.layer4.2.conv2.bn0.running_var", "pretrained.layer4.2.conv2.bn0.num_batches_tracked", "pretrained.layer4.2.conv2.fc1.weight", "pretrained.layer4.2.conv2.fc1.bias", "pretrained.layer4.2.conv2.bn1.weight", "pretrained.layer4.2.conv2.bn1.bias", "pretrained.layer4.2.conv2.bn1.running_mean", "pretrained.layer4.2.conv2.bn1.running_var", "pretrained.layer4.2.conv2.bn1.num_batches_tracked", "pretrained.layer4.2.conv2.fc2.weight", "pretrained.layer4.2.conv2.fc2.bias".
size mismatch for pretrained.conv1.0.weight: copying a param with shape torch.Size([32, 3, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 3, 3, 3]).
size mismatch for pretrained.conv1.1.weight: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.1.bias: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.1.running_mean: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.1.running_var: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.3.weight: copying a param with shape torch.Size([32, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for pretrained.conv1.4.weight: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.4.bias: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.4.running_mean: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.4.running_var: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.6.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 64, 3, 3]).
size mismatch for pretrained.bn1.weight: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for pretrained.bn1.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for pretrained.bn1.running_mean: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for pretrained.bn1.running_var: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for pretrained.layer1.0.conv1.weight: copying a param with shape torch.Size([64, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]).
size mismatch for pretrained.layer1.0.downsample.1.weight: copying a param with shape torch.Size([256, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([256]).
size mismatch for pretrained.layer2.0.downsample.1.weight: copying a param with shape torch.Size([512, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for pretrained.layer3.0.downsample.1.weight: copying a param with shape torch.Size([1024, 512, 1, 1]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for pretrained.layer4.0.downsample.1.weight: copying a param with shape torch.Size([2048, 1024, 1, 1]) from checkpoint, the shape in current model is torch.Size([2048]).

@zhanghang1989
Copy link
Owner

Did you use --resume PATH/TO/THE/MODEL?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants