You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
hi
I trained atten model and I used train_dist file for the training
when I want to test the model using the trained atten model some errors occurred:
can u help me?
untimeError: Error(s) in loading state_dict for ATTEN:
Missing key(s) in state_dict: "pretrained.layer1.0.conv2.weight", "pretrained.layer1.0.bn2.weight", "pretrained.layer1.0.bn2.bias", "pretrained.layer1.0.bn2.running_mean", "pretrained.layer1.0.bn2.running_var", "pretrained.layer1.0.downsample.0.weight", "pretrained.layer1.0.downsample.1.bias", "pretrained.layer1.0.downsample.1.running_mean", "pretrained.layer1.0.downsample.1.running_var", "pretrained.layer1.1.conv2.weight", "pretrained.layer1.1.bn2.weight", "pretrained.layer1.1.bn2.bias", "pretrained.layer1.1.bn2.running_mean", "pretrained.layer1.1.bn2.running_var", "pretrained.layer1.2.conv2.weight", "pretrained.layer1.2.bn2.weight", "pretrained.layer1.2.bn2.bias", "pretrained.layer1.2.bn2.running_mean", "pretrained.layer1.2.bn2.running_var", "pretrained.layer2.0.conv2.weight", "pretrained.layer2.0.bn2.weight", "pretrained.layer2.0.bn2.bias", "pretrained.layer2.0.bn2.running_mean", "pretrained.layer2.0.bn2.running_var", "pretrained.layer2.0.downsample.0.weight", "pretrained.layer2.0.downsample.1.bias", "pretrained.layer2.0.downsample.1.running_mean", "pretrained.layer2.0.downsample.1.running_var", "pretrained.layer2.1.conv2.weight", "pretrained.layer2.1.bn2.weight", "pretrained.layer2.1.bn2.bias", "pretrained.layer2.1.bn2.running_mean", "pretrained.layer2.1.bn2.running_var", "pretrained.layer2.2.conv2.weight", "pretrained.layer2.2.bn2.weight", "pretrained.layer2.2.bn2.bias", "pretrained.layer2.2.bn2.running_mean", "pretrained.layer2.2.bn2.running_var", "pretrained.layer2.3.conv2.weight", "pretrained.layer2.3.bn2.weight", "pretrained.layer2.3.bn2.bias", "pretrained.layer2.3.bn2.running_mean", "pretrained.layer2.3.bn2.running_var", "pretrained.layer3.0.conv2.weight", "pretrained.layer3.0.bn2.weight", "pretrained.layer3.0.bn2.bias", "pretrained.layer3.0.bn2.running_mean", "pretrained.layer3.0.bn2.running_var", "pretrained.layer3.0.downsample.0.weight", "pretrained.layer3.0.downsample.1.bias", "pretrained.layer3.0.downsample.1.running_mean", "pretrained.layer3.0.downsample.1.running_var", "pretrained.layer3.1.conv2.weight", "pretrained.layer3.1.bn2.weight", "pretrained.layer3.1.bn2.bias", "pretrained.layer3.1.bn2.running_mean", "pretrained.layer3.1.bn2.running_var", "pretrained.layer3.2.conv2.weight", "pretrained.layer3.2.bn2.weight", "pretrained.layer3.2.bn2.bias", "pretrained.layer3.2.bn2.running_mean", "pretrained.layer3.2.bn2.running_var", "pretrained.layer3.3.conv2.weight", "pretrained.layer3.3.bn2.weight", "pretrained.layer3.3.bn2.bias", "pretrained.layer3.3.bn2.running_mean", "pretrained.layer3.3.bn2.running_var", "pretrained.layer3.4.conv2.weight", "pretrained.layer3.4.bn2.weight", "pretrained.layer3.4.bn2.bias", "pretrained.layer3.4.bn2.running_mean", "pretrained.layer3.4.bn2.running_var", "pretrained.layer3.5.conv2.weight", "pretrained.layer3.5.bn2.weight", "pretrained.layer3.5.bn2.bias", "pretrained.layer3.5.bn2.running_mean", "pretrained.layer3.5.bn2.running_var", "pretrained.layer4.0.conv2.weight", "pretrained.layer4.0.bn2.weight", "pretrained.layer4.0.bn2.bias", "pretrained.layer4.0.bn2.running_mean", "pretrained.layer4.0.bn2.running_var", "pretrained.layer4.0.downsample.0.weight", "pretrained.layer4.0.downsample.1.bias", "pretrained.layer4.0.downsample.1.running_mean", "pretrained.layer4.0.downsample.1.running_var", "pretrained.layer4.1.conv2.weight", "pretrained.layer4.1.bn2.weight", "pretrained.layer4.1.bn2.bias", "pretrained.layer4.1.bn2.running_mean", "pretrained.layer4.1.bn2.running_var", "pretrained.layer4.2.conv2.weight", "pretrained.layer4.2.bn2.weight", "pretrained.layer4.2.bn2.bias", "pretrained.layer4.2.bn2.running_mean", "pretrained.layer4.2.bn2.running_var".
Unexpected key(s) in state_dict: "pretrained.layer1.0.conv2.conv.weight", "pretrained.layer1.0.conv2.bn0.weight", "pretrained.layer1.0.conv2.bn0.bias", "pretrained.layer1.0.conv2.bn0.running_mean", "pretrained.layer1.0.conv2.bn0.running_var", "pretrained.layer1.0.conv2.bn0.num_batches_tracked", "pretrained.layer1.0.conv2.fc1.weight", "pretrained.layer1.0.conv2.fc1.bias", "pretrained.layer1.0.conv2.bn1.weight", "pretrained.layer1.0.conv2.bn1.bias", "pretrained.layer1.0.conv2.bn1.running_mean", "pretrained.layer1.0.conv2.bn1.running_var", "pretrained.layer1.0.conv2.bn1.num_batches_tracked", "pretrained.layer1.0.conv2.fc2.weight", "pretrained.layer1.0.conv2.fc2.bias", "pretrained.layer1.0.downsample.2.weight", "pretrained.layer1.0.downsample.2.bias", "pretrained.layer1.0.downsample.2.running_mean", "pretrained.layer1.0.downsample.2.running_var", "pretrained.layer1.0.downsample.2.num_batches_tracked", "pretrained.layer1.1.conv2.conv.weight", "pretrained.layer1.1.conv2.bn0.weight", "pretrained.layer1.1.conv2.bn0.bias", "pretrained.layer1.1.conv2.bn0.running_mean", "pretrained.layer1.1.conv2.bn0.running_var", "pretrained.layer1.1.conv2.bn0.num_batches_tracked", "pretrained.layer1.1.conv2.fc1.weight", "pretrained.layer1.1.conv2.fc1.bias", "pretrained.layer1.1.conv2.bn1.weight", "pretrained.layer1.1.conv2.bn1.bias", "pretrained.layer1.1.conv2.bn1.running_mean", "pretrained.layer1.1.conv2.bn1.running_var", "pretrained.layer1.1.conv2.bn1.num_batches_tracked", "pretrained.layer1.1.conv2.fc2.weight", "pretrained.layer1.1.conv2.fc2.bias", "pretrained.layer1.2.conv2.conv.weight", "pretrained.layer1.2.conv2.bn0.weight", "pretrained.layer1.2.conv2.bn0.bias", "pretrained.layer1.2.conv2.bn0.running_mean", "pretrained.layer1.2.conv2.bn0.running_var", "pretrained.layer1.2.conv2.bn0.num_batches_tracked", "pretrained.layer1.2.conv2.fc1.weight", "pretrained.layer1.2.conv2.fc1.bias", "pretrained.layer1.2.conv2.bn1.weight", "pretrained.layer1.2.conv2.bn1.bias", "pretrained.layer1.2.conv2.bn1.running_mean", "pretrained.layer1.2.conv2.bn1.running_var", "pretrained.layer1.2.conv2.bn1.num_batches_tracked", "pretrained.layer1.2.conv2.fc2.weight", "pretrained.layer1.2.conv2.fc2.bias", "pretrained.layer2.0.conv2.conv.weight", "pretrained.layer2.0.conv2.bn0.weight", "pretrained.layer2.0.conv2.bn0.bias", "pretrained.layer2.0.conv2.bn0.running_mean", "pretrained.layer2.0.conv2.bn0.running_var", "pretrained.layer2.0.conv2.bn0.num_batches_tracked", "pretrained.layer2.0.conv2.fc1.weight", "pretrained.layer2.0.conv2.fc1.bias", "pretrained.layer2.0.conv2.bn1.weight", "pretrained.layer2.0.conv2.bn1.bias", "pretrained.layer2.0.conv2.bn1.running_mean", "pretrained.layer2.0.conv2.bn1.running_var", "pretrained.layer2.0.conv2.bn1.num_batches_tracked", "pretrained.layer2.0.conv2.fc2.weight", "pretrained.layer2.0.conv2.fc2.bias", "pretrained.layer2.0.downsample.2.weight", "pretrained.layer2.0.downsample.2.bias", "pretrained.layer2.0.downsample.2.running_mean", "pretrained.layer2.0.downsample.2.running_var", "pretrained.layer2.0.downsample.2.num_batches_tracked", "pretrained.layer2.1.conv2.conv.weight", "pretrained.layer2.1.conv2.bn0.weight", "pretrained.layer2.1.conv2.bn0.bias", "pretrained.layer2.1.conv2.bn0.running_mean", "pretrained.layer2.1.conv2.bn0.running_var", "pretrained.layer2.1.conv2.bn0.num_batches_tracked", "pretrained.layer2.1.conv2.fc1.weight", "pretrained.layer2.1.conv2.fc1.bias", "pretrained.layer2.1.conv2.bn1.weight", "pretrained.layer2.1.conv2.bn1.bias", "pretrained.layer2.1.conv2.bn1.running_mean", "pretrained.layer2.1.conv2.bn1.running_var", "pretrained.layer2.1.conv2.bn1.num_batches_tracked", "pretrained.layer2.1.conv2.fc2.weight", "pretrained.layer2.1.conv2.fc2.bias", "pretrained.layer2.2.conv2.conv.weight", "pretrained.layer2.2.conv2.bn0.weight", "pretrained.layer2.2.conv2.bn0.bias", "pretrained.layer2.2.conv2.bn0.running_mean", "pretrained.layer2.2.conv2.bn0.running_var", "pretrained.layer2.2.conv2.bn0.num_batches_tracked", "pretrained.layer2.2.conv2.fc1.weight", "pretrained.layer2.2.conv2.fc1.bias", "pretrained.layer2.2.conv2.bn1.weight", "pretrained.layer2.2.conv2.bn1.bias", "pretrained.layer2.2.conv2.bn1.running_mean", "pretrained.layer2.2.conv2.bn1.running_var", "pretrained.layer2.2.conv2.bn1.num_batches_tracked", "pretrained.layer2.2.conv2.fc2.weight", "pretrained.layer2.2.conv2.fc2.bias", "pretrained.layer2.3.conv2.conv.weight", "pretrained.layer2.3.conv2.bn0.weight", "pretrained.layer2.3.conv2.bn0.bias", "pretrained.layer2.3.conv2.bn0.running_mean", "pretrained.layer2.3.conv2.bn0.running_var", "pretrained.layer2.3.conv2.bn0.num_batches_tracked", "pretrained.layer2.3.conv2.fc1.weight", "pretrained.layer2.3.conv2.fc1.bias", "pretrained.layer2.3.conv2.bn1.weight", "pretrained.layer2.3.conv2.bn1.bias", "pretrained.layer2.3.conv2.bn1.running_mean", "pretrained.layer2.3.conv2.bn1.running_var", "pretrained.layer2.3.conv2.bn1.num_batches_tracked", "pretrained.layer2.3.conv2.fc2.weight", "pretrained.layer2.3.conv2.fc2.bias", "pretrained.layer3.0.conv2.conv.weight", "pretrained.layer3.0.conv2.bn0.weight", "pretrained.layer3.0.conv2.bn0.bias", "pretrained.layer3.0.conv2.bn0.running_mean", "pretrained.layer3.0.conv2.bn0.running_var", "pretrained.layer3.0.conv2.bn0.num_batches_tracked", "pretrained.layer3.0.conv2.fc1.weight", "pretrained.layer3.0.conv2.fc1.bias", "pretrained.layer3.0.conv2.bn1.weight", "pretrained.layer3.0.conv2.bn1.bias", "pretrained.layer3.0.conv2.bn1.running_mean", "pretrained.layer3.0.conv2.bn1.running_var", "pretrained.layer3.0.conv2.bn1.num_batches_tracked", "pretrained.layer3.0.conv2.fc2.weight", "pretrained.layer3.0.conv2.fc2.bias", "pretrained.layer3.0.downsample.2.weight", "pretrained.layer3.0.downsample.2.bias", "pretrained.layer3.0.downsample.2.running_mean", "pretrained.layer3.0.downsample.2.running_var", "pretrained.layer3.0.downsample.2.num_batches_tracked", "pretrained.layer3.1.conv2.conv.weight", "pretrained.layer3.1.conv2.bn0.weight", "pretrained.layer3.1.conv2.bn0.bias", "pretrained.layer3.1.conv2.bn0.running_mean", "pretrained.layer3.1.conv2.bn0.running_var", "pretrained.layer3.1.conv2.bn0.num_batches_tracked", "pretrained.layer3.1.conv2.fc1.weight", "pretrained.layer3.1.conv2.fc1.bias", "pretrained.layer3.1.conv2.bn1.weight", "pretrained.layer3.1.conv2.bn1.bias", "pretrained.layer3.1.conv2.bn1.running_mean", "pretrained.layer3.1.conv2.bn1.running_var", "pretrained.layer3.1.conv2.bn1.num_batches_tracked", "pretrained.layer3.1.conv2.fc2.weight", "pretrained.layer3.1.conv2.fc2.bias", "pretrained.layer3.2.conv2.conv.weight", "pretrained.layer3.2.conv2.bn0.weight", "pretrained.layer3.2.conv2.bn0.bias", "pretrained.layer3.2.conv2.bn0.running_mean", "pretrained.layer3.2.conv2.bn0.running_var", "pretrained.layer3.2.conv2.bn0.num_batches_tracked", "pretrained.layer3.2.conv2.fc1.weight", "pretrained.layer3.2.conv2.fc1.bias", "pretrained.layer3.2.conv2.bn1.weight", "pretrained.layer3.2.conv2.bn1.bias", "pretrained.layer3.2.conv2.bn1.running_mean", "pretrained.layer3.2.conv2.bn1.running_var", "pretrained.layer3.2.conv2.bn1.num_batches_tracked", "pretrained.layer3.2.conv2.fc2.weight", "pretrained.layer3.2.conv2.fc2.bias", "pretrained.layer3.3.conv2.conv.weight", "pretrained.layer3.3.conv2.bn0.weight", "pretrained.layer3.3.conv2.bn0.bias", "pretrained.layer3.3.conv2.bn0.running_mean", "pretrained.layer3.3.conv2.bn0.running_var", "pretrained.layer3.3.conv2.bn0.num_batches_tracked", "pretrained.layer3.3.conv2.fc1.weight", "pretrained.layer3.3.conv2.fc1.bias", "pretrained.layer3.3.conv2.bn1.weight", "pretrained.layer3.3.conv2.bn1.bias", "pretrained.layer3.3.conv2.bn1.running_mean", "pretrained.layer3.3.conv2.bn1.running_var", "pretrained.layer3.3.conv2.bn1.num_batches_tracked", "pretrained.layer3.3.conv2.fc2.weight", "pretrained.layer3.3.conv2.fc2.bias", "pretrained.layer3.4.conv2.conv.weight", "pretrained.layer3.4.conv2.bn0.weight", "pretrained.layer3.4.conv2.bn0.bias", "pretrained.layer3.4.conv2.bn0.running_mean", "pretrained.layer3.4.conv2.bn0.running_var", "pretrained.layer3.4.conv2.bn0.num_batches_tracked", "pretrained.layer3.4.conv2.fc1.weight", "pretrained.layer3.4.conv2.fc1.bias", "pretrained.layer3.4.conv2.bn1.weight", "pretrained.layer3.4.conv2.bn1.bias", "pretrained.layer3.4.conv2.bn1.running_mean", "pretrained.layer3.4.conv2.bn1.running_var", "pretrained.layer3.4.conv2.bn1.num_batches_tracked", "pretrained.layer3.4.conv2.fc2.weight", "pretrained.layer3.4.conv2.fc2.bias", "pretrained.layer3.5.conv2.conv.weight", "pretrained.layer3.5.conv2.bn0.weight", "pretrained.layer3.5.conv2.bn0.bias", "pretrained.layer3.5.conv2.bn0.running_mean", "pretrained.layer3.5.conv2.bn0.running_var", "pretrained.layer3.5.conv2.bn0.num_batches_tracked", "pretrained.layer3.5.conv2.fc1.weight", "pretrained.layer3.5.conv2.fc1.bias", "pretrained.layer3.5.conv2.bn1.weight", "pretrained.layer3.5.conv2.bn1.bias", "pretrained.layer3.5.conv2.bn1.running_mean", "pretrained.layer3.5.conv2.bn1.running_var", "pretrained.layer3.5.conv2.bn1.num_batches_tracked", "pretrained.layer3.5.conv2.fc2.weight", "pretrained.layer3.5.conv2.fc2.bias", "pretrained.layer4.0.conv2.conv.weight", "pretrained.layer4.0.conv2.bn0.weight", "pretrained.layer4.0.conv2.bn0.bias", "pretrained.layer4.0.conv2.bn0.running_mean", "pretrained.layer4.0.conv2.bn0.running_var", "pretrained.layer4.0.conv2.bn0.num_batches_tracked", "pretrained.layer4.0.conv2.fc1.weight", "pretrained.layer4.0.conv2.fc1.bias", "pretrained.layer4.0.conv2.bn1.weight", "pretrained.layer4.0.conv2.bn1.bias", "pretrained.layer4.0.conv2.bn1.running_mean", "pretrained.layer4.0.conv2.bn1.running_var", "pretrained.layer4.0.conv2.bn1.num_batches_tracked", "pretrained.layer4.0.conv2.fc2.weight", "pretrained.layer4.0.conv2.fc2.bias", "pretrained.layer4.0.downsample.2.weight", "pretrained.layer4.0.downsample.2.bias", "pretrained.layer4.0.downsample.2.running_mean", "pretrained.layer4.0.downsample.2.running_var", "pretrained.layer4.0.downsample.2.num_batches_tracked", "pretrained.layer4.1.conv2.conv.weight", "pretrained.layer4.1.conv2.bn0.weight", "pretrained.layer4.1.conv2.bn0.bias", "pretrained.layer4.1.conv2.bn0.running_mean", "pretrained.layer4.1.conv2.bn0.running_var", "pretrained.layer4.1.conv2.bn0.num_batches_tracked", "pretrained.layer4.1.conv2.fc1.weight", "pretrained.layer4.1.conv2.fc1.bias", "pretrained.layer4.1.conv2.bn1.weight", "pretrained.layer4.1.conv2.bn1.bias", "pretrained.layer4.1.conv2.bn1.running_mean", "pretrained.layer4.1.conv2.bn1.running_var", "pretrained.layer4.1.conv2.bn1.num_batches_tracked", "pretrained.layer4.1.conv2.fc2.weight", "pretrained.layer4.1.conv2.fc2.bias", "pretrained.layer4.2.conv2.conv.weight", "pretrained.layer4.2.conv2.bn0.weight", "pretrained.layer4.2.conv2.bn0.bias", "pretrained.layer4.2.conv2.bn0.running_mean", "pretrained.layer4.2.conv2.bn0.running_var", "pretrained.layer4.2.conv2.bn0.num_batches_tracked", "pretrained.layer4.2.conv2.fc1.weight", "pretrained.layer4.2.conv2.fc1.bias", "pretrained.layer4.2.conv2.bn1.weight", "pretrained.layer4.2.conv2.bn1.bias", "pretrained.layer4.2.conv2.bn1.running_mean", "pretrained.layer4.2.conv2.bn1.running_var", "pretrained.layer4.2.conv2.bn1.num_batches_tracked", "pretrained.layer4.2.conv2.fc2.weight", "pretrained.layer4.2.conv2.fc2.bias".
size mismatch for pretrained.conv1.0.weight: copying a param with shape torch.Size([32, 3, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 3, 3, 3]).
size mismatch for pretrained.conv1.1.weight: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.1.bias: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.1.running_mean: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.1.running_var: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.3.weight: copying a param with shape torch.Size([32, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for pretrained.conv1.4.weight: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.4.bias: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.4.running_mean: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.4.running_var: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.6.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 64, 3, 3]).
size mismatch for pretrained.bn1.weight: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for pretrained.bn1.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for pretrained.bn1.running_mean: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for pretrained.bn1.running_var: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for pretrained.layer1.0.conv1.weight: copying a param with shape torch.Size([64, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]).
size mismatch for pretrained.layer1.0.downsample.1.weight: copying a param with shape torch.Size([256, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([256]).
size mismatch for pretrained.layer2.0.downsample.1.weight: copying a param with shape torch.Size([512, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for pretrained.layer3.0.downsample.1.weight: copying a param with shape torch.Size([1024, 512, 1, 1]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for pretrained.layer4.0.downsample.1.weight: copying a param with shape torch.Size([2048, 1024, 1, 1]) from checkpoint, the shape in current model is torch.Size([2048]).
The text was updated successfully, but these errors were encountered:
hi
I trained atten model and I used train_dist file for the training
when I want to test the model using the trained atten model some errors occurred:
can u help me?
untimeError: Error(s) in loading state_dict for ATTEN:
Missing key(s) in state_dict: "pretrained.layer1.0.conv2.weight", "pretrained.layer1.0.bn2.weight", "pretrained.layer1.0.bn2.bias", "pretrained.layer1.0.bn2.running_mean", "pretrained.layer1.0.bn2.running_var", "pretrained.layer1.0.downsample.0.weight", "pretrained.layer1.0.downsample.1.bias", "pretrained.layer1.0.downsample.1.running_mean", "pretrained.layer1.0.downsample.1.running_var", "pretrained.layer1.1.conv2.weight", "pretrained.layer1.1.bn2.weight", "pretrained.layer1.1.bn2.bias", "pretrained.layer1.1.bn2.running_mean", "pretrained.layer1.1.bn2.running_var", "pretrained.layer1.2.conv2.weight", "pretrained.layer1.2.bn2.weight", "pretrained.layer1.2.bn2.bias", "pretrained.layer1.2.bn2.running_mean", "pretrained.layer1.2.bn2.running_var", "pretrained.layer2.0.conv2.weight", "pretrained.layer2.0.bn2.weight", "pretrained.layer2.0.bn2.bias", "pretrained.layer2.0.bn2.running_mean", "pretrained.layer2.0.bn2.running_var", "pretrained.layer2.0.downsample.0.weight", "pretrained.layer2.0.downsample.1.bias", "pretrained.layer2.0.downsample.1.running_mean", "pretrained.layer2.0.downsample.1.running_var", "pretrained.layer2.1.conv2.weight", "pretrained.layer2.1.bn2.weight", "pretrained.layer2.1.bn2.bias", "pretrained.layer2.1.bn2.running_mean", "pretrained.layer2.1.bn2.running_var", "pretrained.layer2.2.conv2.weight", "pretrained.layer2.2.bn2.weight", "pretrained.layer2.2.bn2.bias", "pretrained.layer2.2.bn2.running_mean", "pretrained.layer2.2.bn2.running_var", "pretrained.layer2.3.conv2.weight", "pretrained.layer2.3.bn2.weight", "pretrained.layer2.3.bn2.bias", "pretrained.layer2.3.bn2.running_mean", "pretrained.layer2.3.bn2.running_var", "pretrained.layer3.0.conv2.weight", "pretrained.layer3.0.bn2.weight", "pretrained.layer3.0.bn2.bias", "pretrained.layer3.0.bn2.running_mean", "pretrained.layer3.0.bn2.running_var", "pretrained.layer3.0.downsample.0.weight", "pretrained.layer3.0.downsample.1.bias", "pretrained.layer3.0.downsample.1.running_mean", "pretrained.layer3.0.downsample.1.running_var", "pretrained.layer3.1.conv2.weight", "pretrained.layer3.1.bn2.weight", "pretrained.layer3.1.bn2.bias", "pretrained.layer3.1.bn2.running_mean", "pretrained.layer3.1.bn2.running_var", "pretrained.layer3.2.conv2.weight", "pretrained.layer3.2.bn2.weight", "pretrained.layer3.2.bn2.bias", "pretrained.layer3.2.bn2.running_mean", "pretrained.layer3.2.bn2.running_var", "pretrained.layer3.3.conv2.weight", "pretrained.layer3.3.bn2.weight", "pretrained.layer3.3.bn2.bias", "pretrained.layer3.3.bn2.running_mean", "pretrained.layer3.3.bn2.running_var", "pretrained.layer3.4.conv2.weight", "pretrained.layer3.4.bn2.weight", "pretrained.layer3.4.bn2.bias", "pretrained.layer3.4.bn2.running_mean", "pretrained.layer3.4.bn2.running_var", "pretrained.layer3.5.conv2.weight", "pretrained.layer3.5.bn2.weight", "pretrained.layer3.5.bn2.bias", "pretrained.layer3.5.bn2.running_mean", "pretrained.layer3.5.bn2.running_var", "pretrained.layer4.0.conv2.weight", "pretrained.layer4.0.bn2.weight", "pretrained.layer4.0.bn2.bias", "pretrained.layer4.0.bn2.running_mean", "pretrained.layer4.0.bn2.running_var", "pretrained.layer4.0.downsample.0.weight", "pretrained.layer4.0.downsample.1.bias", "pretrained.layer4.0.downsample.1.running_mean", "pretrained.layer4.0.downsample.1.running_var", "pretrained.layer4.1.conv2.weight", "pretrained.layer4.1.bn2.weight", "pretrained.layer4.1.bn2.bias", "pretrained.layer4.1.bn2.running_mean", "pretrained.layer4.1.bn2.running_var", "pretrained.layer4.2.conv2.weight", "pretrained.layer4.2.bn2.weight", "pretrained.layer4.2.bn2.bias", "pretrained.layer4.2.bn2.running_mean", "pretrained.layer4.2.bn2.running_var".
Unexpected key(s) in state_dict: "pretrained.layer1.0.conv2.conv.weight", "pretrained.layer1.0.conv2.bn0.weight", "pretrained.layer1.0.conv2.bn0.bias", "pretrained.layer1.0.conv2.bn0.running_mean", "pretrained.layer1.0.conv2.bn0.running_var", "pretrained.layer1.0.conv2.bn0.num_batches_tracked", "pretrained.layer1.0.conv2.fc1.weight", "pretrained.layer1.0.conv2.fc1.bias", "pretrained.layer1.0.conv2.bn1.weight", "pretrained.layer1.0.conv2.bn1.bias", "pretrained.layer1.0.conv2.bn1.running_mean", "pretrained.layer1.0.conv2.bn1.running_var", "pretrained.layer1.0.conv2.bn1.num_batches_tracked", "pretrained.layer1.0.conv2.fc2.weight", "pretrained.layer1.0.conv2.fc2.bias", "pretrained.layer1.0.downsample.2.weight", "pretrained.layer1.0.downsample.2.bias", "pretrained.layer1.0.downsample.2.running_mean", "pretrained.layer1.0.downsample.2.running_var", "pretrained.layer1.0.downsample.2.num_batches_tracked", "pretrained.layer1.1.conv2.conv.weight", "pretrained.layer1.1.conv2.bn0.weight", "pretrained.layer1.1.conv2.bn0.bias", "pretrained.layer1.1.conv2.bn0.running_mean", "pretrained.layer1.1.conv2.bn0.running_var", "pretrained.layer1.1.conv2.bn0.num_batches_tracked", "pretrained.layer1.1.conv2.fc1.weight", "pretrained.layer1.1.conv2.fc1.bias", "pretrained.layer1.1.conv2.bn1.weight", "pretrained.layer1.1.conv2.bn1.bias", "pretrained.layer1.1.conv2.bn1.running_mean", "pretrained.layer1.1.conv2.bn1.running_var", "pretrained.layer1.1.conv2.bn1.num_batches_tracked", "pretrained.layer1.1.conv2.fc2.weight", "pretrained.layer1.1.conv2.fc2.bias", "pretrained.layer1.2.conv2.conv.weight", "pretrained.layer1.2.conv2.bn0.weight", "pretrained.layer1.2.conv2.bn0.bias", "pretrained.layer1.2.conv2.bn0.running_mean", "pretrained.layer1.2.conv2.bn0.running_var", "pretrained.layer1.2.conv2.bn0.num_batches_tracked", "pretrained.layer1.2.conv2.fc1.weight", "pretrained.layer1.2.conv2.fc1.bias", "pretrained.layer1.2.conv2.bn1.weight", "pretrained.layer1.2.conv2.bn1.bias", "pretrained.layer1.2.conv2.bn1.running_mean", "pretrained.layer1.2.conv2.bn1.running_var", "pretrained.layer1.2.conv2.bn1.num_batches_tracked", "pretrained.layer1.2.conv2.fc2.weight", "pretrained.layer1.2.conv2.fc2.bias", "pretrained.layer2.0.conv2.conv.weight", "pretrained.layer2.0.conv2.bn0.weight", "pretrained.layer2.0.conv2.bn0.bias", "pretrained.layer2.0.conv2.bn0.running_mean", "pretrained.layer2.0.conv2.bn0.running_var", "pretrained.layer2.0.conv2.bn0.num_batches_tracked", "pretrained.layer2.0.conv2.fc1.weight", "pretrained.layer2.0.conv2.fc1.bias", "pretrained.layer2.0.conv2.bn1.weight", "pretrained.layer2.0.conv2.bn1.bias", "pretrained.layer2.0.conv2.bn1.running_mean", "pretrained.layer2.0.conv2.bn1.running_var", "pretrained.layer2.0.conv2.bn1.num_batches_tracked", "pretrained.layer2.0.conv2.fc2.weight", "pretrained.layer2.0.conv2.fc2.bias", "pretrained.layer2.0.downsample.2.weight", "pretrained.layer2.0.downsample.2.bias", "pretrained.layer2.0.downsample.2.running_mean", "pretrained.layer2.0.downsample.2.running_var", "pretrained.layer2.0.downsample.2.num_batches_tracked", "pretrained.layer2.1.conv2.conv.weight", "pretrained.layer2.1.conv2.bn0.weight", "pretrained.layer2.1.conv2.bn0.bias", "pretrained.layer2.1.conv2.bn0.running_mean", "pretrained.layer2.1.conv2.bn0.running_var", "pretrained.layer2.1.conv2.bn0.num_batches_tracked", "pretrained.layer2.1.conv2.fc1.weight", "pretrained.layer2.1.conv2.fc1.bias", "pretrained.layer2.1.conv2.bn1.weight", "pretrained.layer2.1.conv2.bn1.bias", "pretrained.layer2.1.conv2.bn1.running_mean", "pretrained.layer2.1.conv2.bn1.running_var", "pretrained.layer2.1.conv2.bn1.num_batches_tracked", "pretrained.layer2.1.conv2.fc2.weight", "pretrained.layer2.1.conv2.fc2.bias", "pretrained.layer2.2.conv2.conv.weight", "pretrained.layer2.2.conv2.bn0.weight", "pretrained.layer2.2.conv2.bn0.bias", "pretrained.layer2.2.conv2.bn0.running_mean", "pretrained.layer2.2.conv2.bn0.running_var", "pretrained.layer2.2.conv2.bn0.num_batches_tracked", "pretrained.layer2.2.conv2.fc1.weight", "pretrained.layer2.2.conv2.fc1.bias", "pretrained.layer2.2.conv2.bn1.weight", "pretrained.layer2.2.conv2.bn1.bias", "pretrained.layer2.2.conv2.bn1.running_mean", "pretrained.layer2.2.conv2.bn1.running_var", "pretrained.layer2.2.conv2.bn1.num_batches_tracked", "pretrained.layer2.2.conv2.fc2.weight", "pretrained.layer2.2.conv2.fc2.bias", "pretrained.layer2.3.conv2.conv.weight", "pretrained.layer2.3.conv2.bn0.weight", "pretrained.layer2.3.conv2.bn0.bias", "pretrained.layer2.3.conv2.bn0.running_mean", "pretrained.layer2.3.conv2.bn0.running_var", "pretrained.layer2.3.conv2.bn0.num_batches_tracked", "pretrained.layer2.3.conv2.fc1.weight", "pretrained.layer2.3.conv2.fc1.bias", "pretrained.layer2.3.conv2.bn1.weight", "pretrained.layer2.3.conv2.bn1.bias", "pretrained.layer2.3.conv2.bn1.running_mean", "pretrained.layer2.3.conv2.bn1.running_var", "pretrained.layer2.3.conv2.bn1.num_batches_tracked", "pretrained.layer2.3.conv2.fc2.weight", "pretrained.layer2.3.conv2.fc2.bias", "pretrained.layer3.0.conv2.conv.weight", "pretrained.layer3.0.conv2.bn0.weight", "pretrained.layer3.0.conv2.bn0.bias", "pretrained.layer3.0.conv2.bn0.running_mean", "pretrained.layer3.0.conv2.bn0.running_var", "pretrained.layer3.0.conv2.bn0.num_batches_tracked", "pretrained.layer3.0.conv2.fc1.weight", "pretrained.layer3.0.conv2.fc1.bias", "pretrained.layer3.0.conv2.bn1.weight", "pretrained.layer3.0.conv2.bn1.bias", "pretrained.layer3.0.conv2.bn1.running_mean", "pretrained.layer3.0.conv2.bn1.running_var", "pretrained.layer3.0.conv2.bn1.num_batches_tracked", "pretrained.layer3.0.conv2.fc2.weight", "pretrained.layer3.0.conv2.fc2.bias", "pretrained.layer3.0.downsample.2.weight", "pretrained.layer3.0.downsample.2.bias", "pretrained.layer3.0.downsample.2.running_mean", "pretrained.layer3.0.downsample.2.running_var", "pretrained.layer3.0.downsample.2.num_batches_tracked", "pretrained.layer3.1.conv2.conv.weight", "pretrained.layer3.1.conv2.bn0.weight", "pretrained.layer3.1.conv2.bn0.bias", "pretrained.layer3.1.conv2.bn0.running_mean", "pretrained.layer3.1.conv2.bn0.running_var", "pretrained.layer3.1.conv2.bn0.num_batches_tracked", "pretrained.layer3.1.conv2.fc1.weight", "pretrained.layer3.1.conv2.fc1.bias", "pretrained.layer3.1.conv2.bn1.weight", "pretrained.layer3.1.conv2.bn1.bias", "pretrained.layer3.1.conv2.bn1.running_mean", "pretrained.layer3.1.conv2.bn1.running_var", "pretrained.layer3.1.conv2.bn1.num_batches_tracked", "pretrained.layer3.1.conv2.fc2.weight", "pretrained.layer3.1.conv2.fc2.bias", "pretrained.layer3.2.conv2.conv.weight", "pretrained.layer3.2.conv2.bn0.weight", "pretrained.layer3.2.conv2.bn0.bias", "pretrained.layer3.2.conv2.bn0.running_mean", "pretrained.layer3.2.conv2.bn0.running_var", "pretrained.layer3.2.conv2.bn0.num_batches_tracked", "pretrained.layer3.2.conv2.fc1.weight", "pretrained.layer3.2.conv2.fc1.bias", "pretrained.layer3.2.conv2.bn1.weight", "pretrained.layer3.2.conv2.bn1.bias", "pretrained.layer3.2.conv2.bn1.running_mean", "pretrained.layer3.2.conv2.bn1.running_var", "pretrained.layer3.2.conv2.bn1.num_batches_tracked", "pretrained.layer3.2.conv2.fc2.weight", "pretrained.layer3.2.conv2.fc2.bias", "pretrained.layer3.3.conv2.conv.weight", "pretrained.layer3.3.conv2.bn0.weight", "pretrained.layer3.3.conv2.bn0.bias", "pretrained.layer3.3.conv2.bn0.running_mean", "pretrained.layer3.3.conv2.bn0.running_var", "pretrained.layer3.3.conv2.bn0.num_batches_tracked", "pretrained.layer3.3.conv2.fc1.weight", "pretrained.layer3.3.conv2.fc1.bias", "pretrained.layer3.3.conv2.bn1.weight", "pretrained.layer3.3.conv2.bn1.bias", "pretrained.layer3.3.conv2.bn1.running_mean", "pretrained.layer3.3.conv2.bn1.running_var", "pretrained.layer3.3.conv2.bn1.num_batches_tracked", "pretrained.layer3.3.conv2.fc2.weight", "pretrained.layer3.3.conv2.fc2.bias", "pretrained.layer3.4.conv2.conv.weight", "pretrained.layer3.4.conv2.bn0.weight", "pretrained.layer3.4.conv2.bn0.bias", "pretrained.layer3.4.conv2.bn0.running_mean", "pretrained.layer3.4.conv2.bn0.running_var", "pretrained.layer3.4.conv2.bn0.num_batches_tracked", "pretrained.layer3.4.conv2.fc1.weight", "pretrained.layer3.4.conv2.fc1.bias", "pretrained.layer3.4.conv2.bn1.weight", "pretrained.layer3.4.conv2.bn1.bias", "pretrained.layer3.4.conv2.bn1.running_mean", "pretrained.layer3.4.conv2.bn1.running_var", "pretrained.layer3.4.conv2.bn1.num_batches_tracked", "pretrained.layer3.4.conv2.fc2.weight", "pretrained.layer3.4.conv2.fc2.bias", "pretrained.layer3.5.conv2.conv.weight", "pretrained.layer3.5.conv2.bn0.weight", "pretrained.layer3.5.conv2.bn0.bias", "pretrained.layer3.5.conv2.bn0.running_mean", "pretrained.layer3.5.conv2.bn0.running_var", "pretrained.layer3.5.conv2.bn0.num_batches_tracked", "pretrained.layer3.5.conv2.fc1.weight", "pretrained.layer3.5.conv2.fc1.bias", "pretrained.layer3.5.conv2.bn1.weight", "pretrained.layer3.5.conv2.bn1.bias", "pretrained.layer3.5.conv2.bn1.running_mean", "pretrained.layer3.5.conv2.bn1.running_var", "pretrained.layer3.5.conv2.bn1.num_batches_tracked", "pretrained.layer3.5.conv2.fc2.weight", "pretrained.layer3.5.conv2.fc2.bias", "pretrained.layer4.0.conv2.conv.weight", "pretrained.layer4.0.conv2.bn0.weight", "pretrained.layer4.0.conv2.bn0.bias", "pretrained.layer4.0.conv2.bn0.running_mean", "pretrained.layer4.0.conv2.bn0.running_var", "pretrained.layer4.0.conv2.bn0.num_batches_tracked", "pretrained.layer4.0.conv2.fc1.weight", "pretrained.layer4.0.conv2.fc1.bias", "pretrained.layer4.0.conv2.bn1.weight", "pretrained.layer4.0.conv2.bn1.bias", "pretrained.layer4.0.conv2.bn1.running_mean", "pretrained.layer4.0.conv2.bn1.running_var", "pretrained.layer4.0.conv2.bn1.num_batches_tracked", "pretrained.layer4.0.conv2.fc2.weight", "pretrained.layer4.0.conv2.fc2.bias", "pretrained.layer4.0.downsample.2.weight", "pretrained.layer4.0.downsample.2.bias", "pretrained.layer4.0.downsample.2.running_mean", "pretrained.layer4.0.downsample.2.running_var", "pretrained.layer4.0.downsample.2.num_batches_tracked", "pretrained.layer4.1.conv2.conv.weight", "pretrained.layer4.1.conv2.bn0.weight", "pretrained.layer4.1.conv2.bn0.bias", "pretrained.layer4.1.conv2.bn0.running_mean", "pretrained.layer4.1.conv2.bn0.running_var", "pretrained.layer4.1.conv2.bn0.num_batches_tracked", "pretrained.layer4.1.conv2.fc1.weight", "pretrained.layer4.1.conv2.fc1.bias", "pretrained.layer4.1.conv2.bn1.weight", "pretrained.layer4.1.conv2.bn1.bias", "pretrained.layer4.1.conv2.bn1.running_mean", "pretrained.layer4.1.conv2.bn1.running_var", "pretrained.layer4.1.conv2.bn1.num_batches_tracked", "pretrained.layer4.1.conv2.fc2.weight", "pretrained.layer4.1.conv2.fc2.bias", "pretrained.layer4.2.conv2.conv.weight", "pretrained.layer4.2.conv2.bn0.weight", "pretrained.layer4.2.conv2.bn0.bias", "pretrained.layer4.2.conv2.bn0.running_mean", "pretrained.layer4.2.conv2.bn0.running_var", "pretrained.layer4.2.conv2.bn0.num_batches_tracked", "pretrained.layer4.2.conv2.fc1.weight", "pretrained.layer4.2.conv2.fc1.bias", "pretrained.layer4.2.conv2.bn1.weight", "pretrained.layer4.2.conv2.bn1.bias", "pretrained.layer4.2.conv2.bn1.running_mean", "pretrained.layer4.2.conv2.bn1.running_var", "pretrained.layer4.2.conv2.bn1.num_batches_tracked", "pretrained.layer4.2.conv2.fc2.weight", "pretrained.layer4.2.conv2.fc2.bias".
size mismatch for pretrained.conv1.0.weight: copying a param with shape torch.Size([32, 3, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 3, 3, 3]).
size mismatch for pretrained.conv1.1.weight: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.1.bias: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.1.running_mean: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.1.running_var: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.3.weight: copying a param with shape torch.Size([32, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for pretrained.conv1.4.weight: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.4.bias: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.4.running_mean: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.4.running_var: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
size mismatch for pretrained.conv1.6.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 64, 3, 3]).
size mismatch for pretrained.bn1.weight: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for pretrained.bn1.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for pretrained.bn1.running_mean: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for pretrained.bn1.running_var: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for pretrained.layer1.0.conv1.weight: copying a param with shape torch.Size([64, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]).
size mismatch for pretrained.layer1.0.downsample.1.weight: copying a param with shape torch.Size([256, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([256]).
size mismatch for pretrained.layer2.0.downsample.1.weight: copying a param with shape torch.Size([512, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for pretrained.layer3.0.downsample.1.weight: copying a param with shape torch.Size([1024, 512, 1, 1]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for pretrained.layer4.0.downsample.1.weight: copying a param with shape torch.Size([2048, 1024, 1, 1]) from checkpoint, the shape in current model is torch.Size([2048]).
The text was updated successfully, but these errors were encountered: