-
Notifications
You must be signed in to change notification settings - Fork 466
/
Copy pathrun.py
256 lines (229 loc) · 7.22 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Apache Software License 2.0
#
# Copyright (c) ZenML GmbH 2025. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
import click
from pipelines import (
nlp_use_case_deploy_pipeline,
nlp_use_case_promote_pipeline,
nlp_use_case_training_pipeline,
)
from zenml.enums import ModelStages
from zenml.logger import get_logger
from zenml.model.model import Model
logger = get_logger(__name__)
@click.command(
help="""
ZenML NLP project CLI v0.0.1.
Run the ZenML NLP project model training pipeline with various
options.
Examples:
\b
# Run the pipeline with default options
python run.py
\b
# Run the pipeline without cache
python run.py --no-cache
\b
# Run the pipeline without NA drop and normalization,
# but dropping columns [A,B,C] and keeping 10% of dataset
# as test set.
python run.py --num-epochs 3 --train-batch-size 8 --eval-batch-size 8
\b
# Run the pipeline with Quality Gate for accuracy set at 90% for train set
# and 85% for test set. If any of accuracies will be lower - pipeline will fail.
python run.py --min-train-accuracy 0.9 --min-test-accuracy 0.85 --fail-on-accuracy-quality-gates
"""
)
@click.option(
"--no-cache",
is_flag=True,
default=True,
help="Disable caching for the pipeline run.",
)
@click.option(
"--num-epochs",
default=1,
type=click.INT,
help="Number of epochs to train the model for.",
)
@click.option(
"--train-batch-size",
default=8,
type=click.INT,
help="Batch size for training the model.",
)
@click.option(
"--eval-batch-size",
default=8,
type=click.INT,
help="Batch size for evaluating the model.",
)
@click.option(
"--learning-rate",
default=2e-5,
type=click.FLOAT,
help="Learning rate for training the model.",
)
@click.option(
"--weight-decay",
default=0.01,
type=click.FLOAT,
help="Weight decay for training the model.",
)
@click.option(
"--training-pipeline",
is_flag=True,
default=True,
help="Whether to run the pipeline that train the model to staging.",
)
@click.option(
"--promoting-pipeline",
is_flag=True,
default=True,
help="Whether to run the pipeline that promotes the model to staging.",
)
@click.option(
"--deploying-pipeline",
is_flag=True,
default=False,
help="Whether to run the pipeline that deploys the model to selected deployment platform.",
)
@click.option(
"--deployment-app-title",
default="Sentiment Analyzer",
type=click.STRING,
help="Title of the Gradio interface.",
)
@click.option(
"--deployment-app-description",
default="Sentiment Analyzer",
type=click.STRING,
help="Description of the Gradio interface.",
)
@click.option(
"--deployment-app-interpretation",
default="default",
type=click.STRING,
help="Interpretation mode for the Gradio interface.",
)
@click.option(
"--deployment-app-example",
default="",
type=click.STRING,
help="Comma-separated list of examples to show in the Gradio interface.",
)
@click.option(
"--zenml-model-name",
default="sentiment_analysis",
type=click.STRING,
help="Name of the ZenML Model.",
)
def main(
no_cache: bool = True,
num_epochs: int = 3,
train_batch_size: int = 8,
eval_batch_size: int = 8,
learning_rate: float = 2e-5,
weight_decay: float = 0.01,
training_pipeline: bool = True,
promoting_pipeline: bool = True,
deploying_pipeline: bool = False,
deployment_app_title: str = "Sentiment Analyzer",
deployment_app_description: str = "Sentiment Analyzer",
deployment_app_interpretation: str = "default",
deployment_app_example: str = "",
zenml_model_name: str = "sentiment_analysis",
):
"""Main entry point for the pipeline execution.
This entrypoint is where everything comes together:
* configuring pipeline with the required parameters
(some of which may come from command line arguments)
* launching the pipeline
Args:
no_cache: If `True` cache will be disabled.
"""
# Run a pipeline with the required parameters. This executes
# all steps in the pipeline in the correct order using the orchestrator
# stack component that is configured in your active ZenML stack.
pipeline_args = {
"config_path": os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"config.yaml",
)
}
if no_cache:
pipeline_args["enable_cache"] = False
if training_pipeline:
# Execute Training Pipeline
run_args_train = {
"num_epochs": num_epochs,
"train_batch_size": train_batch_size,
"eval_batch_size": eval_batch_size,
"learning_rate": learning_rate,
"weight_decay": weight_decay,
}
model = Model(
name=zenml_model_name,
license="apache",
description="Show case Model Control Plane.",
delete_new_version_on_failure=True,
tags=["sentiment_analysis", "huggingface"],
)
pipeline_args["model"] = model
pipeline_args["run_name"] = (
f"nlp_use_case_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}"
)
nlp_use_case_training_pipeline.with_options(**pipeline_args)(
**run_args_train
)
logger.info("Training pipeline finished successfully!")
# Execute Promoting Pipeline
if promoting_pipeline:
run_args_promoting = {}
model = Model(name=zenml_model_name, version=ModelStages.LATEST)
pipeline_args["model"] = model
pipeline_args["run_name"] = (
f"nlp_use_case_promoting_pipeline_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}"
)
nlp_use_case_promote_pipeline.with_options(**pipeline_args)(
**run_args_promoting
)
logger.info("Promoting pipeline finished successfully!")
if deploying_pipeline:
pipeline_args["enable_cache"] = False
# Deploying pipeline has new ZenML model config
model = Model(
name=zenml_model_name,
version=ModelStages("staging"),
)
pipeline_args["model"] = model
run_args_deploying = {
"title": deployment_app_title,
"description": deployment_app_description,
"interpretation": deployment_app_interpretation,
"example": deployment_app_example,
}
pipeline_args["run_name"] = (
f"nlp_use_case_deploy_pipeline_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}"
)
nlp_use_case_deploy_pipeline.with_options(**pipeline_args)(
**run_args_deploying
)
logger.info("Deploying pipeline finished successfully!")
if __name__ == "__main__":
main()