-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathrun_delete_endpoint.py
86 lines (76 loc) · 2.46 KB
/
run_delete_endpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Apache Software License 2.0
#
# Copyright (c) ZenML GmbH 2023. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import click
from zenml.client import Client
from zenml.logger import get_logger
logger = get_logger(__name__)
@click.command(
help="""
ZenML NLP project CLI v0.0.1.
Deletes the endpoint of the latest run of the deployment pipeline.
"""
)
@click.option(
"--deployment-pipeline-name",
default="sentinment_analysis_deploy_pipeline",
type=click.STRING,
help="Name of the Deployment Pipeline.",
)
@click.option(
"--deployment-pipeline-version",
default=1,
type=click.INT,
help="Version of the Deployment Pipeline.",
)
@click.option(
"--step-name",
default="deploy_hf_to_sagemaker",
type=click.STRING,
help="Name of the step that returns the endpoint.",
)
@click.option(
"--step-output-name",
default="sagemaker_endpoint_name",
type=click.STRING,
help="Name of the step output that returns the endpoint.",
)
def main(
deployment_pipeline_name: str = "sentinment_analysis_deploy_pipeline",
deployment_pipeline_version: int = 1,
step_name: str = "deploy_hf_to_sagemaker",
step_output_name: str = "sagemaker_endpoint_name",
):
"""Main entry point for the script."""
client = Client()
latest_run = client.get_pipeline(
deployment_pipeline_name, version=deployment_pipeline_version
).runs[0]
endpoint_name = (
latest_run.steps[step_name].outputs[step_output_name].load()
)
logger.info(f"Deleting endpoint with name: {endpoint_name}")
# Do a `aws sagemaker delete-endpoint --endpoint-name <endpoint_name>` on the CLI
# Throw an error if error code is not 0
return_code = os.system(
f"aws sagemaker delete-endpoint --endpoint-name {endpoint_name}"
)
if return_code != 0:
raise RuntimeError("Endpoint could not be deleted!")
logger.info("Endpoint deleted successfully!")
if __name__ == "__main__":
main()