-
Notifications
You must be signed in to change notification settings - Fork 11
/
sgemm_ocl1.h
343 lines (298 loc) · 10.9 KB
/
sgemm_ocl1.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/* public domain Simple, Minimalistic, Fast GEMM library
* ©2019-2020 Yuichiro Nakada
*
* Basic usage:
* sgemm_ocl_init(platform, device, max_buffer_size);
* sgemm_ocl('N', 'N', M, N, K, A, B, C);
* sgemm_ocl_finish();
* */
#include "ocl.h"
char sgemm_kcode[] = OCLSTRINGIFY(
__kernel void gemm_cnn(__global float* restrict gm, const int8 _info)
{
const int M = _info.s0;
const int N = _info.s1;
const int K = _info.s2;
__global float* restrict A = (__global float* restrict)(gm + _info.s3);
__global float* restrict B = (__global float* restrict)(gm + _info.s4);
__global float* restrict C = (__global float* restrict)(gm + _info.s5);
// Thread identifiers
const int globalRow = get_global_id(0); // Row ID of C (0..M)
const int globalCol = get_global_id(1); // Col ID of C (0..N)
if (globalRow < M && globalCol < N) {
// Compute a single element (loop over K)
float acc = 0.0f;
for (int k=0; k<K; k++) {
acc += A[k*M + globalRow] * B[globalCol*K + k];
}
// Store the result
C[globalCol*M + globalRow] = acc;
}
}
__kernel void gemm_cnt(__global float* restrict gm, const int8 _info)
{
const int M = _info.s0;
const int N = _info.s1;
const int K = _info.s2;
__global float* restrict A = (__global float* restrict)(gm + _info.s3);
__global float* restrict B = (__global float* restrict)(gm + _info.s4);
__global float* restrict C = (__global float* restrict)(gm + _info.s5);
// Thread identifiers
const int globalRow = get_global_id(0); // Row ID of C (0..M)
const int globalCol = get_global_id(1); // Col ID of C (0..N)
if (globalRow >= M || globalCol >= N) return;
// Compute a single element (loop over K)
float acc = 0.0f;
for (int k=0; k<K; k++) {
acc += A[k*M + globalRow] * B[globalCol + N*k];
}
// Store the result
C[globalCol*M + globalRow] = acc;
}
__kernel void gemm_rnn_LReLU(__global float* restrict gm, const int8 _info)
{
const int M = _info.s0;
const int N = _info.s1;
const int K = _info.s2;
__global float* restrict A = (__global float* restrict)(gm + _info.s3);
__global float* restrict B = (__global float* restrict)(gm + _info.s4);
__global float* restrict C = (__global float* restrict)(gm + _info.s5);
__global float* restrict bias = (__global float* restrict)(gm + _info.s6);
// Thread identifiers
const int globalRow = get_global_id(0); // Row ID of C (0..M)
const int globalCol = get_global_id(1); // Col ID of C (0..N)
if (globalRow >= M || globalCol >= N) return;
// Compute a single element (loop over K)
float acc = 0.0f;
for (int k=0; k<K; k++) {
// acc += A[k*M + globalRow] * B[globalCol + N*k];
acc += A[k + globalRow*K] * B[globalCol + N*k]; // RNN
}
// Store the result with Leaky ReLU
// z = (float4)max(z, (float4)0.0) + (float4)min(z, (float4)0.0) * (float4)0.1;
// C[globalCol*M + globalRow] = max(acc, 0.0) + min(acc, 0.0) * 0.1;
C[globalCol + globalRow*N] = max(acc, 0.0) + min(acc, 0.0) * 0.1 + bias[globalRow]; // Row major
}
#define TRANSPOSEX 16
#define TRANSPOSEY 16
// Simple transpose kernel for a P * Q matrix
__kernel void transpose(__global float* gm, const int8 _info)
{
const int P = _info.s0;
const int Q = _info.s1;
__global float* input = (__global float*)(gm + _info.s2);
__global float* output = (__global float*)(gm + _info.s3);
// Thread identifiers
const int tx = get_local_id(0);
const int ty = get_local_id(1);
const int ID0 = get_group_id(0)*TRANSPOSEX + tx; // 0..P
const int ID1 = get_group_id(1)*TRANSPOSEY + ty; // 0..Q
// Set-up the local memory for shuffling
__local float buffer[TRANSPOSEX][TRANSPOSEY];
// Swap the x and y coordinates to perform the rotation (coalesced)
if (ID0 < P && ID1 < Q) {
buffer[ty][tx] = input[ID1*P + ID0];
}
// Synchronise all threads
barrier(CLK_LOCAL_MEM_FENCE);
// We don't have to swap the x and y thread indices here,
// because that's already done in the local memory
const int newID0 = get_group_id(1)*TRANSPOSEY + tx;
const int newID1 = get_group_id(0)*TRANSPOSEX + ty;
// Store the transposed result (coalesced)
if (newID0 < Q && newID1 < P) {
output[newID1*Q + newID0] = buffer[tx][ty];
}
}
__kernel void im2col(__global float* gm, const int8 _info)
{
__global float* im_src = (__global float*)(gm + _info.s0);
int channels = _info.s1;
int height_inp = _info.s2;
int width_inp = _info.s3;
int kernel_h = _info.s4;
int kernel_w = _info.s4;
int pad_h = _info.s5;
int pad_w = _info.s5;
int stride_h = _info.s6;
int stride_w = _info.s6;
__global float* im_col = (__global float*)(gm + _info.s7);
int height_out = (height_inp + 2 * pad_h - kernel_h) / stride_h + 1;
int width_out = (width_inp + 2 * pad_w - kernel_w) / stride_w + 1;
int index = get_global_id(0);
if (index >= height_out * width_out * channels) return;
int j_out = index % width_out;
int i_out = (index / width_out) % height_out;
int c_inp = (index / width_out) / height_out;
int c_out = c_inp * kernel_h * kernel_w;
int i_inp = i_out * stride_h - pad_h;
int j_inp = j_out * stride_w - pad_w;
im_src += (c_inp * height_inp + i_inp) * width_inp + j_inp;
im_col += (c_out * height_out + i_out) * width_out + j_out;
for (int ki = 0; ki < kernel_h; ++ki) {
for (int kj = 0; kj < kernel_w; ++kj) {
int i = i_inp + ki;
int j = j_inp + kj;
*im_col = (i >= 0 && j >= 0 && i < height_inp && j < width_inp) ? im_src[ki * width_inp + kj] : 0;
im_col += height_out * width_out;
}
}
}
);
// Threadblock sizes
#define TS 16
float *_mat;
int _info[8];
args_t _args[] = {
{ CL_MEM_READ_WRITE, 0, 0, 0, OCL_BUFFER },
{ 0, sizeof(int)*8, 0, _info, 0 },
{ 0, 0, 0, 0, 0 },
};
ocl_t _kernel[] = {
// global: m*MDIMC/MWG, n*NDIMC/NWG
// { "gemm_fast", 0, 2,{1,1,1},{MDIMC,NDIMC,1}, _args },
// { "gemm_cnn", 0, 2,{/*M*/1,/*N*/1},{TS,TS}, _args },
{ "gemm_cnt", 0, 2,{/*M*/1,/*N*/1},{TS,TS}, _args },
// global: k, n
{ "transpose", 0, 2,{1,1,1},{TRANSPOSEX,TRANSPOSEY,1}, _args },
{ "im2col", 0, 1,{1,1,1},{16,1,1}, _args },
{ "gemm_rnn_LReLU", 0, 2,{/*M*/1,/*N*/1},{TS,TS}, _args },
};
int _ksz = sizeof(_kernel)/sizeof(_kernel[0]);
void sgemm_ocl_init(int platform, int device, size_t size)
{
// _args[0].s = _mat = malloc(size);
_args[0].size = size;
// printf("sgemm_ocl_init: %lu\n", size);
oclSetup(platform, device);
oclKernel(_kernel, _ksz, "-cl-denorms-are-zero -cl-finite-math-only -cl-fast-relaxed-math -Werror", sgemm_kcode);
oclKernelArgs(_kernel, _ksz);
}
static inline void sgemm_ocl(char ta, char tb, int m, int n, int k, float *a, float *b, float *c)
{
int mk = m*k;
int kn = k*n;
int mn = m*n;
int off_a = 0;
int off_b = mk;
oclWrite(_args[0].p, 0, sizeof(float)*mk, a);
oclWrite(_args[0].p, sizeof(float)*mk, sizeof(float)*kn, b);
if (ta=='T') {
_info[0] = m; // a
_info[1] = k; // ta
_info[2] = 0; // a
_info[3] = off_a = mk +kn +mn;
_kernel[1].global_size[0] = ceil_int(m, TRANSPOSEX);
_kernel[1].global_size[1] = ceil_int(k, TRANSPOSEY);
oclKernelArgsWrite(_args);
oclRun(_kernel+1);
}
if (tb=='N') {
_info[0] = k; // b
_info[1] = n; // tb
_info[2] = mk; // b
_info[3] = off_b = mk +kn +mn +mk;
_kernel[1].global_size[0] = ceil_int(k, TRANSPOSEX);
_kernel[1].global_size[1] = ceil_int(n, TRANSPOSEY);
oclKernelArgsWrite(_args);
oclRun(_kernel+1);
}
_info[0] = m;
_info[1] = n;
_info[2] = k;
_info[3] = off_a; // a
_info[4] = off_b; // b
_info[5] = mk +kn; // c
_kernel[0].global_size[0] = ceil_int(m, TS);
_kernel[0].global_size[1] = ceil_int(n, TS);
oclRun(_kernel);
oclRead(_args[0].p, sizeof(float)*(mk+kn), sizeof(float)*mn, c);
}
void sgemm_ocl_finish()
{
// free(_mat);
oclReleaseKernel(_kernel, _ksz);
oclFinish();
}
static inline void ocl_im2col(float *inputs, int ich, int w, int h, int k, int pad, int stride, float *outputs)
{
// im2col(pix, 3, h, w, 4, 4, 2, 2, 1, 1, workspace);
int hcol = (h + 2 * pad - k) / stride + 1;
int wcol = (w + 2 * pad - k) / stride + 1;
_info[0] = wcol*hcol*ich*k*k; // inputs
_info[1] = ich;
_info[2] = h;
_info[3] = w;
_info[4] = k;
_info[5] = pad;
_info[6] = stride;
_info[7] = 0; // outputs
_kernel[2].global_size[0] = ceil_int(_info[0], 16);
oclWrite(_args[0].p, sizeof(float)*_info[0], sizeof(float)*w*h*ich, inputs);
oclRun(_kernel+2);
oclRead(_args[0].p, sizeof(float)*_info[7], sizeof(float)*_info[0], outputs);
}
static inline void ocl_convolution(float *inputs, int ich, int w, int h, float *weights, int k, int pad, int stride, float *outputs, int ch)
{
// im2col(pix, 3, h, w, 4, 4, 2, 2, 1, 1, workspace);
int hcol = (h + 2 * pad - k) / stride + 1;
int wcol = (w + 2 * pad - k) / stride + 1;
oclWrite(_args[0].p, sizeof(float)*wcol*hcol*ich*k*k, sizeof(float)*w*h*ich, inputs);
_info[0] = wcol*hcol*ich*k*k; // inputs
_info[1] = ich;
_info[2] = h;
_info[3] = w;
_info[4] = k;
_info[5] = pad;
_info[6] = stride;
_info[7] = 0; // outputs
_kernel[2].global_size[0] = ceil_int(_info[0], 16);
oclRun(_kernel+2);
// sgemm_ocl('N', 'T', ch, wcol*hcol, k*k, magic_kernel, workspace, pix);
oclWrite(_args[0].p, sizeof(float)*(wcol*hcol*ich*k*k), sizeof(float)*k*k*ich*ch, weights);
_info[0] = ch;
_info[1] = wcol*hcol /* *batch */;
_info[2] = k*k*ich;
_info[3] = wcol*hcol*ich*k*k; // a (weights)
_info[4] = 0; // b (col)
_info[5] = wcol*hcol*ich*k*k +k*k*ich*ch; // c
_kernel[0].global_size[0] = ceil_int(_info[0], TS);
_kernel[0].global_size[1] = ceil_int(_info[1], TS);
oclRun(_kernel);
oclRead(_args[0].p, sizeof(float)*_info[5], sizeof(float)*wcol*hcol*ch, outputs);
}
static inline void ocl_convolution_LReLU(float *inputs, int ich, int w, int h, float *weights, int k, int pad, int stride, float *outputs, int ch, float *bias)
{
// im2col(pix, 3, h, w, 4, 4, 2, 2, 1, 1, workspace);
int hcol = (h + 2 * pad - k) / stride + 1;
int wcol = (w + 2 * pad - k) / stride + 1;
_info[0] = wcol*hcol*ich*k*k; // inputs
_info[1] = ich;
_info[2] = h;
_info[3] = w;
_info[4] = k;
_info[5] = pad;
_info[6] = stride;
_info[7] = 0; // outputs
_kernel[2].global_size[0] = ceil_int(_info[0], 16);
// printf("clEnqueueWriteBuffer: %lu %lu\n", sizeof(float)*_info[0], sizeof(float)*w*h*ich);
oclWrite(_args[0].p, sizeof(float)*_info[0], sizeof(float)*w*h*ich, inputs);
oclRun(_kernel+2);
// sgemm_ocl('N', 'T', ch, wcol*hcol, k*k, magic_kernel, workspace, pix);
_info[0] = ch;
_info[1] = wcol*hcol /* *batch */;
_info[2] = k*k*ich;
_info[3] = wcol*hcol*ich*k*k; // a (weights)
_info[4] = 0; // b (col)
_info[5] = wcol*hcol*ich*k*k +k*k*ich*ch; // c
_info[6] = _info[5] + wcol*hcol*ch;
_kernel[3].global_size[0] = ceil_int(_info[0], TS);
_kernel[3].global_size[1] = ceil_int(_info[1], TS);
// printf("clEnqueueWriteBuffer: %lu %lu\n", sizeof(float)*_info[3], sizeof(float)*k*k*ich*ch);
oclWrite(_args[0].p, sizeof(float)*_info[3], sizeof(float)*k*k*ich*ch, weights);
// printf("clEnqueueWriteBuffer: %lu %lu\n", sizeof(float)*_info[6], sizeof(float)*ch);
oclWrite(_args[0].p, sizeof(float)*_info[6], sizeof(float)*ch, bias);
oclRun(_kernel+3);
// printf("clEnqueueReadBuffer: %lu %lu\n", sizeof(float)*_info[5], sizeof(float)*wcol*hcol*ch);
oclRead(_args[0].p, sizeof(float)*_info[5], sizeof(float)*wcol*hcol*ch, outputs);
}