-
Notifications
You must be signed in to change notification settings - Fork 11
/
ifft.h
550 lines (498 loc) · 19.4 KB
/
ifft.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/* Simple, Minimalistic, Fixed-point in-place Fast Fourier Transform
*
* Basic usage:
* int fix_fft(short fr[], short fi[], int m, int inverse);
* m: size of data = 2**m
*
* gcc ifft.c -o ifft -DMAIN -lm
* */
/*
fix_fft() perform FFT or inverse FFT
window() applies a Hanning window to the (time) input
fix_loud() calculates the loudness of the signal, for
each freq point. Result is an integer array,
units are dB (values will be negative).
iscale() scale an integer value by (numer/denom).
fix_mpy() perform short-point multiplication.
Sinewave[1024] sinewave normalized to 32767 (= 1.0).
Loudampl[100] Amplitudes for lopudnesses from 0 to -99 dB.
Low_pass Low-pass filter, cutoff at sample_freq / 4.
All data are short-point short integers, in which
-32768 to +32768 represent -1.0 to +1.0. Integer arithmetic
is used for speed, instead of the more natural floating-point.
For the forward FFT (time -> freq), short scaling is
performed to prevent arithmetic overflow, and to map a 0dB
sine/cosine wave (i.e. amplitude = 32767) to two -6dB freq
coefficients; the one in the lower half is reported as 0dB
by fix_loud(). The return value is always 0.
For the inverse FFT (freq -> time), short scaling cannot be
done, as two 0dB coefficients would sum to a peak amplitude of
64K, overflowing the 32k range of the short-point integers.
Thus, the fix_fft() routine performs variable scaling, and
returns a value which is the number of bits LEFT by which
the output must be shifted to get the actual amplitude
(i.e. if fix_fft() returns 3, each value of fr[] and fi[]
must be multiplied by 8 (2**3) for proper scaling.
Clearly, this cannot be done within the short-point short
integers. In practice, if the result is to be used as a
filter, the scale_shift can usually be ignored, as the
result will be approximately correctly normalized as is.
Written by: Tom Roberts 11/8/89
Made portable: Malcolm Slaney 12/15/94 [email protected]
Enhanced: Dimitrios P. Bouras 14 Jun 2006 [email protected]
*/
//---------------------------------------------------------
/* FIX_MPY() - short-point multiplication macro.
This macro is a statement, not an expression (uses asm).
BEWARE: make sure _DX is not clobbered by evaluating (A) or DEST.
args are all of type short.
Scaling ensures that 32767*32767 = 32767. */
//---------------------------------------------------------
#define dosFIX_MPY(DEST,A,B) { \
_DX = (B); \
_AX = (A); \
asm imul dx; \
asm add ax,ax; \
asm adc dx,dx; \
DEST = _DX; }
#define FIX_MPY(DEST,A,B) DEST = ((long)(A) * (long)(B))>>15
#define N_WAVE 1024 /* dimension of Sinewave[] */
#define LOG2_N_WAVE 10 /* log2(N_WAVE) */
#define N_LOUD 100 /* dimension of Loudampl[] */
#if N_WAVE != 1024
ERROR: N_WAVE != 1024
#endif
short Sinewave[1024] = {
0, 201, 402, 603, 804, 1005, 1206, 1406,
1607, 1808, 2009, 2209, 2410, 2610, 2811, 3011,
3211, 3411, 3611, 3811, 4011, 4210, 4409, 4608,
4807, 5006, 5205, 5403, 5601, 5799, 5997, 6195,
6392, 6589, 6786, 6982, 7179, 7375, 7571, 7766,
7961, 8156, 8351, 8545, 8739, 8932, 9126, 9319,
9511, 9703, 9895, 10087, 10278, 10469, 10659, 10849,
11038, 11227, 11416, 11604, 11792, 11980, 12166, 12353,
12539, 12724, 12909, 13094, 13278, 13462, 13645, 13827,
14009, 14191, 14372, 14552, 14732, 14911, 15090, 15268,
15446, 15623, 15799, 15975, 16150, 16325, 16499, 16672,
16845, 17017, 17189, 17360, 17530, 17699, 17868, 18036,
18204, 18371, 18537, 18702, 18867, 19031, 19194, 19357,
19519, 19680, 19840, 20000, 20159, 20317, 20474, 20631,
20787, 20942, 21096, 21249, 21402, 21554, 21705, 21855,
22004, 22153, 22301, 22448, 22594, 22739, 22883, 23027,
23169, 23311, 23452, 23592, 23731, 23869, 24006, 24143,
24278, 24413, 24546, 24679, 24811, 24942, 25072, 25201,
25329, 25456, 25582, 25707, 25831, 25954, 26077, 26198,
26318, 26437, 26556, 26673, 26789, 26905, 27019, 27132,
27244, 27355, 27466, 27575, 27683, 27790, 27896, 28001,
28105, 28208, 28309, 28410, 28510, 28608, 28706, 28802,
28897, 28992, 29085, 29177, 29268, 29358, 29446, 29534,
29621, 29706, 29790, 29873, 29955, 30036, 30116, 30195,
30272, 30349, 30424, 30498, 30571, 30643, 30713, 30783,
30851, 30918, 30984, 31049,
31113, 31175, 31236, 31297,
31356, 31413, 31470, 31525, 31580, 31633, 31684, 31735,
31785, 31833, 31880, 31926, 31970, 32014, 32056, 32097,
32137, 32176, 32213, 32249, 32284, 32318, 32350, 32382,
32412, 32441, 32468, 32495, 32520, 32544, 32567, 32588,
32609, 32628, 32646, 32662, 32678, 32692, 32705, 32717,
32727, 32736, 32744, 32751, 32757, 32761, 32764, 32766,
32767, 32766, 32764, 32761, 32757, 32751, 32744, 32736,
32727, 32717, 32705, 32692, 32678, 32662, 32646, 32628,
32609, 32588, 32567, 32544, 32520, 32495, 32468, 32441,
32412, 32382, 32350, 32318, 32284, 32249, 32213, 32176,
32137, 32097, 32056, 32014, 31970, 31926, 31880, 31833,
31785, 31735, 31684, 31633, 31580, 31525, 31470, 31413,
31356, 31297, 31236, 31175, 31113, 31049, 30984, 30918,
30851, 30783, 30713, 30643, 30571, 30498, 30424, 30349,
30272, 30195, 30116, 30036, 29955, 29873, 29790, 29706,
29621, 29534, 29446, 29358, 29268, 29177, 29085, 28992,
28897, 28802, 28706, 28608, 28510, 28410, 28309, 28208,
28105, 28001, 27896, 27790, 27683, 27575, 27466, 27355,
27244, 27132, 27019, 26905, 26789, 26673, 26556, 26437,
26318, 26198, 26077, 25954, 25831, 25707, 25582, 25456,
25329, 25201, 25072, 24942, 24811, 24679, 24546, 24413,
24278, 24143, 24006, 23869, 23731, 23592, 23452, 23311,
23169, 23027, 22883, 22739, 22594, 22448, 22301, 22153,
22004, 21855, 21705, 21554, 21402, 21249, 21096, 20942,
20787, 20631, 20474, 20317, 20159, 20000, 19840, 19680,
19519, 19357, 19194, 19031, 18867, 18702, 18537, 18371,
18204, 18036, 17868, 17699, 17530, 17360, 17189, 17017,
16845, 16672, 16499, 16325, 16150, 15975, 15799, 15623,
15446, 15268, 15090, 14911, 14732, 14552, 14372, 14191,
14009, 13827, 13645, 13462, 13278, 13094, 12909, 12724,
12539, 12353, 12166, 11980, 11792, 11604, 11416, 11227,
11038, 10849, 10659, 10469, 10278, 10087, 9895, 9703,
9511, 9319, 9126, 8932, 8739, 8545, 8351, 8156,
7961, 7766, 7571, 7375, 7179, 6982, 6786, 6589,
6392, 6195, 5997, 5799, 5601, 5403, 5205, 5006,
4807, 4608, 4409, 4210, 4011, 3811, 3611, 3411,
3211, 3011, 2811, 2610, 2410, 2209, 2009, 1808,
1607, 1406, 1206, 1005, 804, 603, 402, 201,
0, -201, -402, -603, -804, -1005, -1206, -1406,
-1607, -1808, -2009, -2209, -2410, -2610, -2811, -3011,
-3211, -3411, -3611, -3811, -4011, -4210, -4409, -4608,
-4807, -5006, -5205, -5403, -5601, -5799, -5997, -6195,
-6392, -6589, -6786, -6982, -7179, -7375, -7571, -7766,
-7961, -8156, -8351, -8545, -8739, -8932, -9126, -9319,
-9511, -9703, -9895, -10087, -10278, -10469, -10659, -10849,
-11038, -11227, -11416, -11604, -11792, -11980, -12166, -12353,
-12539, -12724, -12909, -13094, -13278, -13462, -13645, -13827,
-14009, -14191, -14372, -14552, -14732, -14911, -15090, -15268,
-15446, -15623, -15799, -15975, -16150, -16325, -16499, -16672,
-16845, -17017, -17189, -17360, -17530, -17699, -17868, -18036,
-18204, -18371, -18537, -18702, -18867, -19031, -19194, -19357,
-19519, -19680, -19840, -20000, -20159, -20317, -20474, -20631,
-20787, -20942, -21096, -21249, -21402, -21554, -21705, -21855,
-22004, -22153, -22301, -22448, -22594, -22739, -22883, -23027,
-23169, -23311, -23452, -23592, -23731, -23869, -24006, -24143,
-24278, -24413, -24546, -24679, -24811, -24942, -25072, -25201,
-25329, -25456, -25582, -25707, -25831, -25954, -26077, -26198,
-26318, -26437, -26556, -26673, -26789, -26905, -27019, -27132,
-27244, -27355, -27466, -27575, -27683, -27790, -27896, -28001,
-28105, -28208, -28309, -28410, -28510, -28608, -28706, -28802,
-28897, -28992, -29085, -29177, -29268, -29358, -29446, -29534,
-29621, -29706, -29790, -29873, -29955, -30036, -30116, -30195,
-30272, -30349, -30424, -30498, -30571, -30643, -30713, -30783,
-30851, -30918, -30984, -31049, -31113, -31175, -31236, -31297,
-31356, -31413, -31470, -31525, -31580, -31633, -31684, -31735,
-31785, -31833, -31880, -31926, -31970, -32014, -32056, -32097,
-32137, -32176, -32213, -32249, -32284, -32318, -32350, -32382,
-32412, -32441, -32468, -32495, -32520, -32544, -32567, -32588,
-32609, -32628, -32646, -32662, -32678, -32692, -32705, -32717,
-32727, -32736, -32744, -32751, -32757, -32761, -32764, -32766,
-32767, -32766, -32764, -32761, -32757, -32751, -32744, -32736,
-32727, -32717, -32705, -32692, -32678, -32662, -32646, -32628,
-32609, -32588, -32567, -32544, -32520, -32495, -32468, -32441,
-32412, -32382, -32350, -32318, -32284, -32249, -32213, -32176,
-32137, -32097, -32056, -32014, -31970, -31926, -31880, -31833,
-31785, -31735, -31684, -31633, -31580, -31525, -31470, -31413,
-31356, -31297, -31236, -31175, -31113, -31049, -30984, -30918,
-30851, -30783, -30713, -30643, -30571, -30498, -30424, -30349,
-30272, -30195, -30116, -30036, -29955, -29873, -29790, -29706,
-29621, -29534, -29446, -29358, -29268, -29177, -29085, -28992,
-28897, -28802, -28706, -28608, -28510, -28410, -28309, -28208,
-28105, -28001, -27896, -27790, -27683, -27575, -27466, -27355,
-27244, -27132, -27019, -26905, -26789, -26673, -26556, -26437,
-26318, -26198, -26077, -25954, -25831, -25707, -25582, -25456,
-25329, -25201, -25072, -24942, -24811, -24679, -24546, -24413,
-24278, -24143, -24006, -23869, -23731, -23592, -23452, -23311,
-23169, -23027, -22883, -22739, -22594, -22448, -22301, -22153,
-22004, -21855, -21705, -21554, -21402, -21249, -21096, -20942,
-20787, -20631, -20474, -20317, -20159, -20000, -19840, -19680,
-19519, -19357, -19194, -19031, -18867, -18702, -18537, -18371,
-18204, -18036, -17868, -17699, -17530, -17360, -17189, -17017,
-16845, -16672, -16499, -16325, -16150, -15975, -15799, -15623,
-15446, -15268, -15090, -14911, -14732, -14552, -14372, -14191,
-14009, -13827, -13645, -13462, -13278, -13094, -12909, -12724,
-12539, -12353, -12166, -11980, -11792, -11604, -11416, -11227,
-11038, -10849, -10659, -10469, -10278, -10087, -9895, -9703,
-9511, -9319, -9126, -8932, -8739, -8545, -8351, -8156,
-7961, -7766, -7571, -7375, -7179, -6982, -6786, -6589,
-6392, -6195, -5997, -5799, -5601, -5403, -5205, -5006,
-4807, -4608, -4409, -4210, -4011, -3811, -3611, -3411,
-3211, -3011, -2811, -2610, -2410, -2209, -2009, -1808,
-1607, -1406, -1206, -1005, -804, -603, -402, -201,
};
#if N_LOUD != 100
ERROR: N_LOUD != 100
#endif
short Loudampl[100] = {
32767, 29203, 26027, 23197, 20674, 18426, 16422, 14636,
13044, 11626, 10361, 9234, 8230, 7335, 6537, 5826,
5193, 4628, 4125, 3676, 3276, 2920, 2602, 2319,
2067, 1842, 1642, 1463, 1304, 1162, 1036, 923,
823, 733, 653, 582, 519, 462, 412, 367,
327, 292, 260, 231, 206, 184, 164, 146,
130, 116, 103, 92, 82, 73, 65, 58,
51, 46, 41, 36, 32, 29, 26, 23,
20, 18, 16, 14, 13, 11, 10, 9,
8, 7, 6, 5, 5, 4, 4, 3,
3, 2, 2, 2, 2, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0,
};
extern short Sinewave[N_WAVE]; /* placed at end of this file for clarity */
extern short Loudampl[N_LOUD];
//---------------------------------------------------------
// short-point multiplication
//---------------------------------------------------------
inline short fix_mpy(short a, short b)
{
FIX_MPY(a, a, b);
return a;
}
//---------------------------------------------------------
// Fixed-point Fast Fourier Transform
/* if n>0 FFT is done, if n<0 inverse FFT is done
fr[n], fi[n] are real, imaginary arrays, INPUT AND RESULT.
size of data = 2**m
set inverse to 0=dft, 1=idft */
//---------------------------------------------------------
int fix_fft(short fr[], short fi[], int m, int inverse)
{
int mr, nn, i, j, l, k, istep, n, scale, shift;
short qr, qi, tr, ti, wr, wi, t;
n = 1<<m;
if (n > N_WAVE) return -1;
mr = 0;
nn = n - 1;
scale = 0;
/* decimation in time - re-order data */
for (m=1; m<=nn; ++m) {
l = n;
do {
l >>= 1;
} while (mr+l > nn);
mr = (mr & (l-1)) + l;
if (mr <= m) continue;
tr = fr[m];
fr[m] = fr[mr];
fr[mr] = tr;
ti = fi[m];
fi[m] = fi[mr];
fi[mr] = ti;
}
l = 1;
k = LOG2_N_WAVE-1;
while (l < n) {
if (inverse) {
/* variable scaling, depending upon data */
shift = 0;
for (i=0; i<n; ++i) {
j = fr[i];
if (j < 0) j = -j;
m = fi[i];
if (m < 0) m = -m;
if (j > 16383 || m > 16383) {
shift = 1;
break;
}
}
if (shift) ++scale;
} else {
/* short scaling, for proper normalization -
there will be log2(n) passes, so this
results in an overall factor of 1/n,
distributed to maximize arithmetic accuracy. */
shift = 1;
}
/* it may not be obvious, but the shift will be performed
on each data point exactly once, during this pass. */
istep = l << 1;
for (m=0; m<l; ++m) {
j = m << k;
/* 0 <= j < N_WAVE/2 */
wr = Sinewave[j+N_WAVE/4];
wi = -Sinewave[j];
if (inverse) wi = -wi;
if (shift) {
wr >>= 1;
wi >>= 1;
}
for (i=m; i<n; i+=istep) {
j = i + l;
tr = fix_mpy(wr, fr[j]) - fix_mpy(wi, fi[j]);
ti = fix_mpy(wr, fi[j]) + fix_mpy(wi, fr[j]);
qr = fr[i];
qi = fi[i];
if (shift) {
qr >>= 1;
qi >>= 1;
}
fr[j] = qr - tr;
fi[j] = qi - ti;
fr[i] = qr + tr;
fi[i] = qi + ti;
}
}
--k;
l = istep;
}
return scale;
}
//---------------------------------------------------------
/* fix_fftr() - forward/inverse FFT on array of real numbers.
Real FFT/iFFT using half-size complex FFT by distributing
even/odd samples into real/imaginary arrays respectively.
In order to save data space (i.e. to avoid two arrays, one
for real, one for imaginary samples), we proceed in the
following two steps: a) samples are rearranged in the real
array so that all even samples are in places 0-(N/2-1) and
all imaginary samples in places (N/2)-(N-1), and b) fix_fft
is called with fr and fi pointing to index 0 and index N/2
respectively in the original array. The above guarantees
that fix_fft "sees" consecutive real samples as alternating
real and imaginary samples in the complex array. */
//---------------------------------------------------------
int fix_fftr(short f[], int m, int inverse)
{
int i, N = 1<<(m-1), scale = 0;
short tt, *fr=f, *fi=&f[N];
if (inverse) {
scale = fix_fft(fi, fr, m-1, inverse);
}
for (i=1; i<N; i+=2) {
tt = f[N+i-1];
f[N+i-1] = f[i];
f[i] = tt;
}
if (!inverse) {
scale = fix_fft(fi, fr, m-1, inverse);
}
return scale;
}
//---------------------------------------------------------
// apply a Hanning window
//---------------------------------------------------------
void window(short fr[], int n)
{
int i, j, k;
j = N_WAVE/n;
n >>= 1;
for (i=0, k=N_WAVE/4; i<n; ++i, k+=j) FIX_MPY(fr[i], fr[i], 16384-(Sinewave[k]>>1));
n <<= 1;
for (k-=j; i<n; ++i, k-=j) FIX_MPY(fr[i], fr[i], 16384-(Sinewave[k]>>1));
}
//---------------------------------------------------------
// find loudness (in dB) from the complex amplitude.
//---------------------------------------------------------
int db_from_ampl(short re, short im)
{
static long loud2[N_LOUD] = {0};
long v;
int i;
if (loud2[0] == 0) {
loud2[0] = (long)Loudampl[0] * (long)Loudampl[0];
for (i=1; i<N_LOUD; ++i) {
v = (long)Loudampl[i] * (long)Loudampl[i];
loud2[i] = v;
loud2[i-1] = (loud2[i-1]+v) / 2;
}
}
v = (long)re * (long)re + (long)im * (long)im;
for (i=0; i<N_LOUD; ++i) if(loud2[i] <= v) break;
return (-i);
}
//---------------------------------------------------------
/* fix_loud() - compute loudness of freq-spectrum components.
n should be ntot/2, where ntot was passed to fix_fft();
6 dB is added to account for the omitted alias components.
scale_shift should be the result of fix_fft(), if the time-series
was obtained from an inverse FFT, 0 otherwise.
loud[] is the loudness, in dB wrt 32767; will be +10 to -N_LOUD. */
//---------------------------------------------------------
void fix_loud(short loud[], short fr[], short fi[], int n, int scale_shift)
{
int i, max;
max = 0;
if (scale_shift > 0) max = 10;
scale_shift = (scale_shift+1) * 6;
for (i=0; i<n; ++i) {
loud[i] = db_from_ampl(fr[i], fi[i]) + scale_shift;
if (loud[i] > max) loud[i] = max;
}
}
#if 0
//---------------------------------------------------------
// scale an integer value by (numer/denom)
//---------------------------------------------------------
int iscale(int value, int numer, int denom)
{
#ifdef DOS
asm mov ax,value
asm imul WORD PTR numer
asm idiv WORD PTR denom
return _AX;
#else
return (long)value * (long)numer/(long)denom;
#endif
}
//---------------------------------------------------------
// dot product of two short arrays
//---------------------------------------------------------
short fix_dot(short *hpa, short *pb, int n)
{
short *pa;
long sum;
register short a,b;
unsigned int seg,off;
/* seg = FP_SEG(hpa);
off = FP_OFF(hpa);
seg += off>>4;
off &= 0x000F;
pa = MK_FP(seg,off);*/
sum = 0L;
while (n--) {
a = *pa++;
b = *pb++;
FIX_MPY(a, a, b);
sum += a;
}
if (sum > 0x7FFF) sum = 0x7FFF;
else if (sum < -0x7FFF) sum = -0x7FFF;
return (short)sum;
#ifdef DOS
/* ASSUMES hpa is already normalized so FP_OFF(hpa) < 16 */
asm push ds
asm lds si,hpa
asm les di,pb
asm xor bx,bx
asm xor cx,cx
loop: /* intermediate values can overflow by a factor of 2 without
causing an error; the final value must not overflow! */
asm lodsw
.
asm imul word ptr es:[di]
asm add bx,ax
asm adc cx,dx
asm jo overflow
asm add di,2
asm dec word ptr n
asm jg loop
asm add bx,bx
asm adc cx,cx
asm jo overflow
asm pop ds
return _CX;
overflow:
asm mov cx,7FFFH
asm adc cx,0
asm pop ds
return _CX;
#endif
}
#endif
#ifdef MAIN
#include <stdio.h>
#include <math.h>
#define log2FFT 7
#define FFT_SIZE (1<<log2FFT) // 128
//#define log2N (log2FFT + 1)
#define N (1<<(log2FFT+1)) // 256
#define FREQUENCY 5
#define AMPLITUDE 12288
int main()
{
short real[N], imag[N];
int i;
for (i=0; i<N; i++) {
real[i] = AMPLITUDE*cos(i*FREQUENCY*(2*3.1415926535)/N);
imag[i] = 0;
//printf("%d: %d, %d\n", i, real[i], imag[i]);
}
printf("\n>> SPECTRUM\n");
fix_fft(real, imag, log2FFT, 0);
for (i=0; i<N/2; i++) {
printf("%d: %d, %d\n", i, real[i], imag[i]);
}
printf("----------\n");
for (; i<N; i++) {
printf("%d: %d, %d\n", i, real[i], imag[i]);
}
printf("\n>> Reverse FFT\n");
fix_fft(real, imag, log2FFT, 1);
for (i=0; i<N; i++) {
printf("%d: %d, %d\n", i, real[i], imag[i]);
}
}
#endif /* MAIN */