-
Notifications
You must be signed in to change notification settings - Fork 341
/
dl4m.bib
2290 lines (2124 loc) · 87 KB
/
dl4m.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@inproceedings{Bharucha1988,
author = {Bharucha, J.},
booktitle = {Proceedings of the First Workshop on Artificial Intelligence and Music},
pages = {173--182},
title = {Neural net modeling of music},
year = {1988}
}
@inproceedings{Lewis1988,
abstract = {The author describes a paradigm for creating novel examples from the class of patterns recognized by a trained gradient-descent associative learning network. The paradigm consists of a learning phase, in which the network learns to identify patterns of the desired class, followed by a simple synthesis algorithm, in which a haphazard 'creation' is refined by a gradient-descent search complementary to the one used in learning. This paradigm is an alternative to one in which novel patterns are obtained by applying novel inputs to a learned mapping, and can be used for creative problems, such as music composition, which are not described by an input-output mapping. A simple simulation is shown in which a back-propagation network learns to judge simple patterns representing musical motifs, and then creates similar motifs.<>},
author = {Lewis, J. P.},
booktitle = {IEEE_ICNN},
doi = {10.1109/ICNN.1988.23933},
link = {http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=23933},
month = {Jul.},
pages = {229-233},
title = {Creation by refinement: A creativity paradigm for gradient descent learning networks},
volume = {2},
year = {1988}
}
@inproceedings{Todd1988,
author = {Todd, Peter M.},
booktitle = {Connectionist Models Summer School},
pages = {76--84},
task = {Composition},
title = {A sequential network design for musical applications},
year = {1988}
}
@article{Laden1989,
author = {Laden, Bernice and Keefe, Douglas H.},
issn = {01489267, 15315169},
journal = {[Computer Music Journal](http://computermusicjournal.org/)},
link = {http://www.jstor.org/stable/3679550},
number = {4},
pages = {12-26},
publisher = {The MIT Press},
task = {Chord recognition},
title = {The representation of pitch in a neural net model of chord classification},
volume = {13},
year = {1989}
}
@inproceedings{Lewis1989,
author = {Lewis, J. P.},
booktitle = {ICMC},
link = {https://quod.lib.umich.edu/cgi/p/pod/dod-idx/algorithms-for-music-composition.pdf?c=icmc;idno=bbp2372.1989.044;format=pdf},
publisher = {Ann Arbor, MI: Michigan Publishing, University of Michigan Library},
task = {Composition},
title = {Algorithms for music composition by neural nets: Improved CBR paradigms},
year = {1989}
}
@article{Todd1989,
author = {Todd, Peter M.},
issn = {01489267, 15315169},
journal = {[Computer Music Journal](http://computermusicjournal.org/)},
link = {http://www.jstor.org/stable/3679551},
number = {4},
pages = {27-43},
publisher = {The MIT Press},
task = {Composition},
title = {A connectionist approach to algorithmic composition},
volume = {13},
year = {1989}
}
@article{Mozer1999,
author = {Mozer, Michael C.},
journal = {[Connection Science](http://www.tandfonline.com/toc/ccos20/current)},
link = {http://www-labs.iro.umontreal.ca/~pift6080/H09/documents/papers/mozer-music.pdf},
number = {2-3},
pages = {247--280},
publisher = {Taylor \& Francis},
task = {Composition},
title = {Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing},
volume = {6},
year = {1994}
}
@inproceedings{Kaminsky1995,
activation = {Sigmoid},
address = {Perth, WA, Australia, Australia},
architecture = {No},
author = {Kaminsky, I. and Materka, Andrzej},
batch = {No},
booktitle = {IEEE_ICNN},
code = {No},
computationtime = {No},
dataaugmentation = {No},
dataset = {Inhouse},
dimension = {1D},
doi = {10.1109/ICNN.1995.488091},
dropout = {No},
epochs = {No},
framework = {No},
gpu = {No},
input = {Raw audio},
layers = {1},
learningrate = {0.25},
link = {https://www.researchgate.net/publication/3622871_Automatic_source_identification_of_monophonic_musical_instrument_sounds},
loss = {No},
metric = {No},
momentum = {0.15},
month = {Nov.},
note = {https://ieeexplore.ieee.org/document/488091},
optimizer = {No},
pages = {189-194 vol.1},
reproducible = {No},
task = {Instrument recognition},
title = {Automatic source identification of monophonic musical instrument sounds},
year = {1995}
}
@inproceedings{Matityaho1995,
address = {Israel},
author = {Matityaho, Benyamin and Furst, Miriam},
booktitle = {Convention of Electrical and Electronics Engineers},
link = {http://ieeexplore.ieee.org/abstract/document/514161/},
organization = {IEEE},
pages = {4--3},
task = {MGR},
title = {Neural network based model for classification of music type},
year = {1995}
}
@inproceedings{Dannenberg1997,
author = {Dannenberg, Roger B and Thom, Belinda and Watson, David},
booktitle = {ICMC},
link = {http://repository.cmu.edu/cgi/viewcontent.cgi?article=1496&context=compsci},
publisher = {University of Michigan},
task = {MSR},
title = {A machine learning approach to musical style recognition},
year = {1997}
}
@inproceedings{Soltau1998,
activation = {No},
address = {Seattle, Washington, USA},
architecture = {DNN},
author = {Soltau, Hagen and Schultz, Tanja and Westphal, Martin and Waibel, Alex},
batch = {No},
booktitle = {ICASSP},
code = {No},
computationtime = {No},
dataaugmentation = {No},
dataset = {Inhouse},
dimension = {2D},
dropout = {No},
epochs = {No},
framework = {No},
gpu = {No},
input = {10x5 cepstral coefficients},
layers = {3},
learningrate = {No},
link = {https://www.ri.cmu.edu/pub_files/pub1/soltau_hagen_1998_2/soltau_hagen_1998_2.pdf},
loss = {No},
metric = {No},
momentum = {No},
month = {May},
note = {10 units in hidden layer},
optimizer = {No},
organization = {IEEE},
pages = {1137--1140},
reproducible = {No},
task = {MGR},
title = {Recognition of music types},
volume = {2},
year = {1998}
}
@book{Griffith1999,
author = {Griffith, Niall and Todd, Peter M.},
link = {https://s3.amazonaws.com/academia.edu.documents/3551783/10.1.1.39.6248.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1507055806&Signature=5mGzQc7bvJgUZYfXOmCX8eeNQOs%3D&response-content-disposition=inline%3B%20filename%3DMusical_networks_Parallel_distributed_pe.pdf},
publisher = {MIT Press},
title = {Musical networks: Parallel distributed perception and performance},
year = {1999}
}
@inproceedings{Franklin2001,
architecture = {RNN},
author = {Franklin, Judy A},
booktitle = {Biennial Symposium for Arts and Technology},
link = {http://www.cs.smith.edu/~jfrankli/papers/CtColl01.pdf},
task = {Composition},
title = {Multi-phase learning for jazz improvisation and interaction},
year = {2001}
}
@inproceedings{Buzzanca2002,
author = {Buzzanca, Giuseppe},
booktitle = {Music and Artificial Intelligence. Additional Proceedings of the Second International Conference, ICMAI},
link = {https://www.researchgate.net/profile/Giuseppe_Buzzanca/publication/228588086_A_supervised_learning_approach_to_musical_style_recognition/links/54b43ee90cf26833efd0109f.pdf},
pages = {167},
task = {MGR},
title = {A supervised learning approach to musical style recognition},
volume = {2002},
year = {2002}
}
@inproceedings{Eck2002,
activation = {Logistic Sigmoid},
address = {Martigny, Valais, Switzerland},
architecture = {RNN-LSTM},
author = {Eck, Douglas and Schmidhuber, Juergen},
batch = {No},
booktitle = {[NNSP](http://cogsys.imm.dtu.dk/nnsp2002/)},
code = {No},
computationtime = {15-45 min 1Ghz Pentium},
dataaugmentation = {No},
dataset = {Inhouse},
dimension = {1D},
dropout = {No},
epochs = {No},
framework = {No},
gpu = {No},
input = {Midi Chords & Midi notes},
layers = {1},
learningrate = {0.00001},
link = {http://www-perso.iro.umontreal.ca/~eckdoug/papers/2002_ieee.pdf},
loss = {cross-entropy},
metric = {cross-entropy},
momentum = {0.9},
month = {Sep.},
note = {},
optimizer = {SGD},
organization = {IEEE},
pages = {747--756},
reproducible = {No},
task = {Composition},
title = {Finding temporal structure in music: Blues improvisation with LSTM recurrent networks},
year = {2002}
}
@unpublished{Marolt2002,
activation = {No},
address = {Gothenburg, Sweden},
architecture = {MLP},
author = {Marolt, Matija and Kavcic, Alenka and Privosnik, Marko},
batch = {No},
code = {No},
computationtime = {No},
dataaugmentation = {No},
dataset = {Inhouse},
dimension = {1D},
dropout = {No},
epochs = {No},
framework = {No},
gpu = {No},
input = {Raw audio signal and synthesized},
layers = {1},
learningrate = {No},
link = {https://www.researchgate.net/profile/Matija_Marolt/publication/2473938_Neural_Networks_for_Note_Onset_Detection_in_Piano_Music/links/00b49525efccc79fed000000.pdf},
loss = {No},
metric = {No},
month = {Sep.},
note = {One should take care when citing this article as it is referenced to be published in ICMC 2002 (cf https://scholar.google.fr/scholar?hl=fr&as_sdt=0%2C5&q=Neural+Networks+for+Note+Onset+Detection+in+Piano+Music&btnG=) but it is not in the proceedings of this conference (cf http://dblp.uni-trier.de/db/conf/icmc/icmc2002). If you have more info please get in touch.},
optimizer = {No},
pages = {1--4},
reproducible = {No},
task = {Onset detection},
title = {Neural networks for note onset detection in piano music},
year = {2002}
}
@inproceedings{Nava2004,
author = {Nava, Gabriel Pablo and Tanaka, Hidehiko and Ide, Ichiro},
booktitle = {ISMA},
link = {http://www.murase.nuie.nagoya-u.ac.jp/~ide/res/paper/E04-conference-pablo-1.pdf},
pages = {289--292},
task = {Onset detection},
title = {A convolutional-kernel based approach for note onset detection in piano-solo audio signals},
year = {2004}
}
@inproceedings{Lee2009,
architecture = {CDBN},
author = {Lee, Honglak and Pham, Peter and Largman, Yan and Ng, Andrew Y},
booktitle = {[NIPS](https://nips.cc/)},
dataset = {[TIMIT](https://catalog.ldc.upenn.edu/LDC93S1)},
link = {http://papers.nips.cc/paper/3674-unsupervised-feature-learning-for-audio-classification-using-convolutional-deep-belief-networks.pdf},
pages = {1096--1104},
task = {Speaker gender recognition},
title = {Unsupervised feature learning for audio classification using convolutional deep belief networks},
year = {2009}
}
@phdthesis{Li2010a,
author = {Li, Lihua},
dataset = {[GTzan](http://marsyas.info/downloads/datasets.html)},
input = {MFCC},
link = {http://lbms03.cityu.edu.hk/theses/c_ftt/mphil-cs-b39478026f.pdf},
publisher = {City University of Hong Kong},
title = {Audio musical genre classification using convolutional neural networks and pitch and tempo transformations},
year = {2010}
}
@inproceedings{Li2010b,
author = {Li, Tom LH and Chan, Antoni B and Chun, A},
booktitle = {Int. Conf. Data Mining and Applications},
dataset = {[GTzan](http://marsyas.info/downloads/datasets.html)},
input = {MFCC},
link = {https://www.researchgate.net/profile/Antoni_Chan2/publication/44260643_Automatic_Musical_Pattern_Feature_Extraction_Using_Convolutional_Neural_Network/links/02e7e523dac6bb86b0000000.pdf},
task = {MGR},
title = {Automatic musical pattern feature extraction using convolutional neural network},
year = {2010}
}
@inproceedings{Dieleman2011,
activation = {Custom},
architecture = {CNN & MLP},
author = {Dieleman, Sander and Brakel, Philémon and Schrauwen, Benjamin},
batch = {No},
booktitle = {ISMIR},
code = {No},
dataaugmentation = {No},
dataset = {[MSD](https://labrosa.ee.columbia.edu/millionsong/)},
dropout = {0.3},
epochs = {1},
framework = {Theano},
gpu = {No},
learningrate = {0.005 & 0.0001},
link = {http://www.ismir2011.ismir.net/papers/PS6-3.pdf},
optimizer = {No},
pages = {669--674},
reproducible = {No},
task = {MGR & Artist recognition},
title = {Audio-based music classification with a pretrained convolutional network},
year = {2011}
}
@inproceedings{Humphrey2012b,
architecture = {CNN},
author = {Humphrey, Eric J. and Bello, Juan Pablo},
booktitle = {ICMLA},
dataset = {[Beatles](http://isophonics.net/content/reference-annotations-beatles) & [RWC](https://staff.aist.go.jp/m.goto/RWC-MDB/) & [US Pop](https://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html)},
link = {http://ieeexplore.ieee.org/abstract/document/6406762/},
loss = {Cross-entropy},
organization = {IEEE},
pages = {357--362},
task = {Chord recognition},
title = {Rethinking automatic chord recognition with convolutional neural networks},
volume = {2},
year = {2012}
}
@inproceedings{Humphrey2012a,
author = {Humphrey, Eric J. and Bello, Juan Pablo and LeCun, Yann},
booktitle = {ISMIR},
link = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.2304&rep=rep1&type=pdf},
pages = {403--408},
title = {Moving beyond feature design: Deep architectures and automatic feature learning in music informatics},
year = {2012}
}
@inproceedings{Nakashika2012,
author = {Nakashika, Toru and Garcia, Christophe and Takiguchi, Tetsuya and De Lyon, Insa},
booktitle = {INTERSPEECH},
dataset = {[GTzan](http://marsyas.info/downloads/datasets.html)},
input = {GLCM},
link = {http://liris.cnrs.fr/Documents/Liris-5602.pdf},
task = {MGR},
title = {Local-feature-map integration using convolutional neural networks for music genre classification},
year = {2012}
}
@inproceedings{Nam2012,
author = {Nam, Juhan and Herrera, Jorge and Slaney, Malcolm and Smith, Julius O},
booktitle = {ISMIR},
link = {https://pdfs.semanticscholar.org/099d/85f25e9336f48ff64287a4b53ee5fb64ab51.pdf},
pages = {565--570},
title = {Learning sparse feature representations for music annotation and retrieval},
year = {2012}
}
@inproceedings{Wulfing2012,
author = {Wülfing, Jan and Riedmiller, Martin},
booktitle = {ISMIR},
dataset = {[GTzan](http://marsyas.info/downloads/datasets.html)},
input = {CQT},
link = {http://www.ismir2012.ismir.net/event/papers/139_ISMIR_2012.pdf},
pages = {139--144},
task = {MGR},
title = {Unsupervised learning of local features for music classification},
year = {2012}
}
@inproceedings{Dieleman2013,
author = {Dieleman, Sander and Schrauwen, Benjamin},
booktitle = {ISMIR},
dataset = {[Magnatagatune](http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset)},
input = {Mel-spectrogram},
link = {http://ismir2013.ismir.net/wp-content/uploads/2013/09/69_Paper.pdf},
loss = {cross-entropy},
pages = {3--8},
title = {Multiscale approaches to music audio feature learning},
year = {2013}
}
@inproceedings{Schluter2013,
address = {Prague, Czech Republic},
author = {Schlüter, Jan and Böck, Sebastian},
booktitle = {International Workshop on Machine Learning and Music},
input = {Mel-spectrogram},
link = {http://phenicx.upf.edu/system/files/publications/Schlueter_MML13.pdf},
loss = {cross-entropy},
task = {Onset detection},
title = {Musical onset detection with convolutional neural networks},
year = {2013}
}
@inproceedings{Oord2013,
activation = {ReLU},
architecture = {CNN},
author = {Van den Oord, Aaron and Dieleman, Sander and Schrauwen, Benjamin},
booktitle = {[NIPS](https://nips.cc/)},
dataset = {[MSD](https://labrosa.ee.columbia.edu/millionsong/) & [Echo Nest Taste Profile Subset](https://labrosa.ee.columbia.edu/millionsong/tasteprofile) & [Last.fm](https://www.last.fm/)},
framework = {Theano},
input = {MFCC & Mel-Spectro},
link = {http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf},
metric = {MSE},
pages = {2643--2651},
task = {Recommendation},
title = {Deep content-based music recommendation},
year = {2013}
}
@inproceedings{Coutinho2014,
architecture = {RNN-LSTM},
author = {Coutinho, Eduardo and Weninger, Felix and Schuller, Björn W and Scherer, Klaus R},
booktitle = {MediaEval},
link = {https://pdfs.semanticscholar.org/8a24/c5131d5a28165f719697028c34b00e6d3f60.pdf},
task = {MER},
title = {The munich LSTM-RNN approach to the MediaEval 2014 Emotion In Music task},
year = {2014}
}
@inproceedings{Dieleman2014,
architecture = {CNN},
author = {Dieleman, Sander and Schrauwen, Benjamin},
booktitle = {ICASSP},
dataset = {[Magnatagatune](http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset)},
input = {Raw & Mel-spectrogram},
link = {http://ieeexplore.ieee.org/abstract/document/6854950/},
organization = {IEEE},
pages = {6964--6968},
task = {MGR},
title = {End-to-end learning for music audio},
year = {2014}
}
@techreport{Feng2014,
author = {Feng, Tao},
dataset = {[GTzan](http://marsyas.info/downloads/datasets.html)},
link = {https://courses.engr.illinois.edu/ece544na/fa2014/Tao_Feng.pdf},
task = {MGR},
title = {Deep learning for music genre classification},
year = {2014}
}
@inproceedings{Gencoglu2014,
author = {Gencoglu, Oguzhan and Virtanen, Tuomas and Huttunen, Heikki},
booktitle = {EUSIPCO},
link = {https://www.cs.tut.fi/sgn/arg/music/tuomasv/dnn_eusipco2014.pdf},
organization = {IEEE},
pages = {506--510},
title = {Recognition of acoustic events using deep neural networks},
year = {2014}
}
@article{Gwardys2014,
author = {Gwardys, Grzegorz and Grzywczak, Daniel},
dataset = {[GTzan](http://marsyas.info/downloads/datasets.html)},
journal = {[International Journal of Electronics and Telecommunications](http://ijet.pl/index.php/ijet)},
link = {https://www.degruyter.com/downloadpdf/j/eletel.2014.60.issue-4/eletel-2014-0042/eletel-2014-0042.pdf},
number = {4},
pages = {321--326},
title = {Deep image features in music information retrieval},
volume = {60},
year = {2014}
}
@inproceedings{Humphrey2014,
author = {Humphrey, Eric J. and Bello, Juan Pablo},
booktitle = {ICASSP},
dataset = {[Beatles](http://isophonics.net/content/reference-annotations-beatles) & [RWC](https://staff.aist.go.jp/m.goto/RWC-MDB/) & [US Pop](https://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html)},
input = {CQT},
link = {https://ejhumphrey.com/assets/pdf/humphrey2014music.pdf},
link2 = {https://ieeexplore.ieee.org/document/6854952},
organization = {IEEE},
pages = {6974--6978},
task = {Chord recognition},
title = {From music audio to chord tablature: Teaching deep convolutional networks to play guitar},
year = {2014}
}
@inproceedings{Schluter2014,
architecture = {CNN},
author = {Schlüter, Jan and Bock, Sebastian},
booktitle = {ICASSP},
dataset = {Inhouse},
dimension = {3D},
input = {Mel-spectrogram},
link = {http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p7029-schluter.pdf},
note = {3D representation as input: 3 STFT signals computed with different windows, i.e. different time-freq resolutions},
organization = {IEEE},
pages = {6979--6983},
task = {Onset detection},
title = {Improved musical onset detection with convolutional neural networks},
year = {2014}
}
@inproceedings{Ullrich2014,
address = {Taipei, Taiwan},
author = {Ullrich, Karen and Schlüter, Jan and Grill, Thomas},
booktitle = {ISMIR},
dataset = {[SALAMI](http://ddmal.music.mcgill.ca/research/salami/annotations)},
input = {Mel-spectrogram},
link = {https://dav.grrrr.org/public/pub/ullrich_schlueter_grill-2014-ismir.pdf},
loss = {Cross-entropy},
task = {Boundary detection},
title = {Boundary detection in music structure analysis using convolutional neural networks},
year = {2014}
}
@inproceedings{Wang2014,
architecture = {DBN},
author = {Wang, Xinxi and Wang, Ye},
booktitle = {ACM_MM},
computationtime = {4 hours single GPU},
dataset = {[Echo Nest Taste Profile Subset](https://labrosa.ee.columbia.edu/millionsong/tasteprofile) & [7digital](https://7digital.com)},
epochs = {No},
framework = {Theano},
gpu = {15 nodes of 2 Tesla M2090},
link = {http://www.smcnus.org/wp-content/uploads/2014/08/reco_MM14.pdf},
metric = {RMSE},
organization = {ACM},
pages = {627--636},
task = {Recommendation},
title = {Improving content-based and hybrid music recommendation using deep learning},
year = {2014}
}
@inproceedings{Zhang2014,
architecture = {CNN},
author = {Zhang, Chiyuan and Evangelopoulos, Georgios and Voinea, Stephen and Rosasco, Lorenzo and Poggio, Tomaso},
booktitle = {ICASSP},
dataset = {[GTzan](http://marsyas.info/downloads/datasets.html)},
link = {http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p7034-zhang.pdf},
organization = {IEEE},
pages = {6984--6988},
task = {MGR},
title = {A deep representation for invariance and music classification},
year = {2014}
}
@inproceedings{Choi2015,
author = {Choi, Keunwoo and Fazekas, György and Sandler, Mark Brian and Kim, Jeonghee},
booktitle = {ISMIR},
code = {https://github.com/keunwoochoi/Auralisation},
dataset = {Inhouse},
input = {STFT},
link = {http://ismir2015.uma.es/LBD/LBD24.pdf},
pages = {26--30},
task = {MGR},
title = {Auralisation of deep convolutional neural networks: Listening to learned features},
year = {2015}
}
@inproceedings{Durand2015,
author = {Durand, Simon and Bello, Juan Pablo and David, Bertrand and Richard, Gaël},
booktitle = {ICASSP},
link = {http://perso.telecom-paristech.fr/~grichard/Publications/2015-durand-icassp.pdf},
organization = {IEEE},
pages = {409--413},
task = {Beat detection},
title = {Downbeat tracking with multiple features and deep neural networks},
year = {2015}
}
@inproceedings{Grill2015,
address = {Nice, France},
author = {Grill, Thomas and Schlüter, Jan},
booktitle = {EUSIPCO},
dataset = {[SALAMI](http://ddmal.music.mcgill.ca/research/salami/annotations)},
input = {STFT},
link = {http://www.ofai.at/~jan.schlueter/pubs/2015_eusipco.pdf},
task = {Boundary detection},
title = {Music boundary detection using neural networks on spectrograms and self-similarity lag matrices},
year = {2015}
}
@inproceedings{Hirvonen2015,
author = {Hirvonen, Toni},
booktitle = {Audio Engineering Society Convention},
link = {https://www.researchgate.net/profile/Toni_Hirvonen/publication/276061831_Classification_of_Spatial_Audio_Location_and_Content_Using_Convolutional_Neural_Networks/links/5550665908ae12808b37fe5a/Classification-of-Spatial-Audio-Location-and-Content-Using-Convolutional-Neural-Networks.pdf},
organization = {Audio Engineering Society},
title = {Classification of spatial audio location and content using convolutional neural networks},
year = {2015}
}
@inproceedings{Kereliuk2015a,
author = {Kereliuk, Corey and Sturm, Bob L. and Larsen, Jan},
booktitle = {WASPAA},
link = {http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/6905/pdf/imm6905.pdf},
organization = {IEEE},
pages = {1--5},
title = {Deep learning, audio adversaries, and music content analysis},
year = {2015}
}
@article{Kereliuk2015b,
architecture = {CNN},
author = {Kereliuk, Corey and Sturm, Bob L. and Larsen, Jan},
code = {https://github.com/coreyker/dnn-mgr},
dataset = {[GTzan](http://marsyas.info/downloads/datasets.html) & [LMD](https://sites.google.com/site/carlossillajr/resources/the-latin-music-database-lmd)},
input = {Magnitude spectral frames},
journal = {[IEEE Transactions on Multimedia](https://signalprocessingsociety.org/publications-resources/ieee-transactions-multimedia)},
link = {https://arxiv.org/pdf/1507.04761.pdf},
number = {11},
pages = {2059--2071},
publisher = {IEEE},
task = {MGR},
title = {Deep learning and music adversaries},
volume = {17},
year = {2015}
}
@inproceedings{Leglaive2015,
author = {Leglaive, Simon and Hennequin, Romain and Badeau, Roland},
booktitle = {ICASSP},
link = {https://hal-imt.archives-ouvertes.fr/hal-01110035/},
organization = {IEEE},
pages = {121--125},
task = {SVD},
title = {Singing voice detection with deep recurrent neural networks},
year = {2015}
}
@unpublished{Li2015,
author = {Li, Peter and Qian, Jiyuan and Wang, Tian},
dataset = {[MedleyDB](http://medleydb.weebly.com/)},
input = {1D Freq Raw audio},
journal = {arXiv preprint arXiv:1511.05520},
link = {https://arxiv.org/pdf/1511.05520.pdf},
loss = {Cross-entropy},
task = {Instrument recognition},
title = {Automatic instrument recognition in polyphonic music using convolutional neural networks},
year = {2015}
}
@inproceedings{Mcfee2015,
author = {McFee, Brian and Humphrey, Eric J. and Bello, Juan Pablo},
booktitle = {ISMIR},
dataset = {[MedleyDB](http://medleydb.weebly.com/)},
link = {https://bmcfee.github.io/papers/ismir2015_augmentation.pdf},
pages = {248--254},
task = {Instrument recognition},
title = {A software framework for musical data augmentation},
year = {2015}
}
@unpublished{Nam2015,
author = {Nam, Juhan and Herrera, Jorge and Lee, Kyogu},
journal = {arXiv preprint arXiv:1508.04999},
link = {https://arxiv.org/pdf/1508.04999v1.pdf},
title = {A deep bag-of-features model for music auto-tagging},
year = {2015}
}
@inproceedings{Park2015a,
author = {Park, Taejin and Lee, Taejin},
batch = {No},
booktitle = {ISMIR},
input = {2D},
link = {http://ismir2015.uma.es/LBD/LBD27.pdf},
loss = {Cross-entropy},
task = {Music/Noise segmentation},
title = {Music-noise segmentation in spectrotemporal domain using convolutional neural networks},
year = {2015}
}
@unpublished{Park2015b,
author = {Park, Taejin and Lee, Taejin},
dataset = {[UIOWA MIS](http://theremin.music.uiowa.edu/mis.html)},
journal = {arXiv preprint arXiv:1512.07370},
link = {https://arxiv.org/ftp/arxiv/papers/1512/1512.07370.pdf},
task = {Instrument recognition},
title = {Musical instrument sound classification with deep convolutional neural network using feature fusion approach},
year = {2015}
}
@inproceedings{piczak2015environmental,
author = {Piczak, Karol J},
booktitle = {IEEE_MLSP},
link = {http://karol.piczak.com/papers/Piczak2015-ESC-ConvNet.pdf},
organization = {IEEE},
pages = {1--6},
title = {Environmental sound classification with convolutional neural networks},
year = {2015}
}
@inproceedings{Schluter2015,
architecture = {CNN},
author = {Schlüter, Jan and Grill, Thomas},
booktitle = {ISMIR},
code = {https://github.com/f0k/ismir2015},
dataaugmentation = {Dropout {5%, 10%, 20%} & Noise {Gaussian sigma={0.05, 0.1, 0.2}} & Pitch shift +-{10, 20, 30, 50} & Time stretch +-{10, 20, 30, 50} & Loudness +-{5dB, 10dB, 20dB} & Frequency filter +-{5dB, 10dB, 20dB} & Mix {10%, 20%, 30%, 50%} & Combined & Test and train},
dataset = {Inhouse & [Jamendo](http://www.mathieuramona.com/wp/data/jamendo/) & [RWC](https://staff.aist.go.jp/m.goto/RWC-MDB/)},
input = {Spectrogram},
link = {https://grrrr.org/pub/schlueter-2015-ismir.pdf},
pages = {121--126},
task = {SVD},
title = {Exploring data augmentation for improved singing voice detection with neural networks},
year = {2015}
}
@techreport{Shi2015,
author = {Shi, Zhengshan},
link = {https://cs224d.stanford.edu/reports/SkiZhengshan.pdf},
title = {Singer traits identification using deep neural network},
year = {2015}
}
@inproceedings{Sigtia2015a,
architecture = {RNN},
author = {Sigtia, Siddharth and Benetos, Emmanouil and Boulanger-Lewandowski, Nicolas and Weyde, Tillman and Garcez, Artur S d'Avila and Dixon, Simon},
batch = {No},
booktitle = {ICASSP},
dataset = {[MAPS](http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/maps-database-a-piano-database-for-multipitch-estimation-and-automatic-transcription-of-music/)},
epochs = {No},
gpu = {No},
learningrate = {No},
link = {https://arxiv.org/pdf/1411.1623.pdf},
organization = {IEEE},
pages = {2061--2065},
task = {Transcription},
title = {A hybrid recurrent neural network for music transcription},
year = {2015}
}
@unpublished{Sigtia2015b,
author = {Sigtia, Siddharth and Benetos, Emmanouil and Dixon, Simon},
input = {CQT},
journal = {arXiv preprint arXiv:1508.01774},
link = {https://arxiv.org/pdf/1508.01774.pdf},
task = {Transcription},
title = {An end-to-end neural network for polyphonic music transcription},
year = {2015}
}
@unpublished{Simpson2015,
author = {Simpson, Andrew J. R. and Roma, Gerard and Plumbley, Mark D.},
dataset = {[MedleyDB](http://medleydb.weebly.com/)},
input = {STFT},
journal = {arXiv preprint arXiv:1504.04658},
link = {https://link.springer.com/chapter/10.1007/978-3-319-22482-4_50},
task = {Source separation},
title = {Deep karaoke: Extracting vocals from musical mixtures using a convolutional deep neural network},
year = {2015}
}
@inproceedings{Sturm2015,
author = {Sturm, Bob L. and Santos, João Felipe and Korshunova, Iryna},
booktitle = {ISMIR},
code = {https://github.com/IraKorshunova/folk-rnn},
link = {http://ismir2015.uma.es/LBD/LBD13.pdf},
task = {Composition},
title = {Folk music style modelling by recurrent neural networks with long short term memory units},
year = {2015}
}
@inproceedings{Uhlich2015,
author = {Uhlich, Stefan and Giron, Franck and Mitsufuji, Yuki},
booktitle = {ICASSP},
input = {STFT},
link = {https://www.researchgate.net/profile/Stefan_Uhlich/publication/282001406_Deep_neural_network_based_instrument_extraction_from_music/links/5600eeda08ae07629e52b397/Deep-neural-network-based-instrument-extraction-from-music.pdf},
organization = {IEEE},
pages = {2135--2139},
task = {Source separation},
title = {Deep neural network based instrument extraction from music},
year = {2015}
}
@inproceedings{Zhang2015,
architecture = {CNN},
author = {Zhang, Pengjing and Zheng, Xiaoqing and Zhang, Wenqiang and Li, Siyan and Qian, Sheng and He, Wenqi and Zhang, Shangtong and Wang, Ziyuan},
booktitle = {ICMR},
link = {https://www.researchgate.net/profile/Xiaoqing_Zheng3/publication/275347034_A_Deep_Neural_Network_for_Modeling_Music/links/5539d2060cf2239f4e7dad0d/A-Deep-Neural-Network-for-Modeling-Music.pdf},
task = {MGR},
title = {A deep neural network for modeling music},
year = {2015}
}
@article{Arumugam2016,
architecture = {PNN},
author = {Arumugam, Muthumari and Kaliappan, Mala},
dataset = {[GTzan](http://marsyas.info/downloads/datasets.html)},
journal = {[Circuits and Systems](http://www.scirp.org/journal/cs/)},
link = {http://file.scirp.org/pdf/CS_2016042615054817.pdf},
number = {04},
pages = {255},
publisher = {Scientific Research Publishing},
task = {MGR & Instrument recognition},
title = {An efficient approach for segmentation, feature extraction and classification of audio signals},
volume = {7},
year = {2016}
}
@inproceedings{Choi2016a,
author = {Choi, Keunwoo and Fazekas, György and Sandler, Mark Brian},
booktitle = {CSMC},
link = {https://drive.google.com/file/d/0B1OooSxEtl0FcG9MYnY2Ylh5c0U/view},
task = {Composition},
title = {Text-based LSTM networks for automatic music composition},
year = {2016}
}
@unpublished{Choi2016b,
architecture = {RNN},
author = {Choi, Keunwoo and Fazekas, György and Sandler, Mark Brian},
journal = {arXiv preprint arXiv:1606.02096},
link = {https://arxiv.org/pdf/1606.02096.pdf},
task = {Playlist generation},
title = {Towards playlist generation algorithms using RNNs trained on within-track transitions},
year = {2016}
}
@inproceedings{Choi2016c,
address = {New York, NY, USA},
architecture = {FCN},
author = {Choi, Keunwoo and Fazekas, György and Sandler, Mark Brian},
booktitle = {ISMIR},
link = {https://arxiv.org/pdf/1606.00298.pdf},
pages = {805-811},
task = {MGR},
title = {Automatic tagging using deep convolutional neural networks},
year = {2016}
}
@inproceedings{Deng2016,
author = {Deng, Junqi and Kwok, Yu-Kwong},
booktitle = {ICASSP},
link = {http://ieeexplore.ieee.org/abstract/document/7471677/},
organization = {IEEE},
pages = {261--265},
task = {Chord recognition},
title = {Automatic chord estimation on seventhsbass chord vocabulary using deep neural network},
year = {2016}
}
@inproceedings{Hadjeres2016d,
author = {Hadjeres, Gaëtan and Pachet, François},
booktitle = {ICML},
code = {https://github.com/Ghadjeres/DeepBach},
link = {https://arxiv.org/pdf/1612.01010.pdf},
title = {DeepBach: A steerable model for Bach chorales generation},
year = {2016}
}
@inproceedings{Holzapfel2016,
architecture = {CNN},
author = {Holzapfel, Andre and Grill, Thomas},
booktitle = {ISMIR},
link = {http://www.rhythmos.org/MMILab-Andre_files/ISMIR2016_CNNDBNbeats_camready.pdf},
pages = {262--268},
task = {Beat detection},
title = {Bayesian meter tracking on learned signal representations},
year = {2016}
}
@unpublished{Huang2016,
architecture = {RNN-LSTM},
author = {Huang, Allen and Wu, Raymond},
dataset = {[Bach Corpus](http://musedata.org/)},
journal = {arXiv preprint arXiv:1606.04930},
link = {https://arxiv.org/pdf/1606.04930.pdf},
task = {Composition},
title = {Deep learning for music},
year = {2016}
}
@inproceedings{Jeong2016,
author = {Jeong, Il-Young and Lee, Kyogu},
booktitle = {ISMIR},
input = {STFT & Cepstrum},
link = {https://www.researchgate.net/profile/Il_Young_Jeong/publication/305683876_Learning_temporal_features_using_a_deep_neural_network_and_its_application_to_music_genre_classification/links/5799a27c08aec89db7bb9f92.pdf},
title = {Learning temporal features using a deep neural network and its application to music genre classification},
year = {2016}
}
@unpublished{Kelz2016,
architecture = {DNN & ConvNet},
author = {Kelz, Rainer and Dorfer, Matthias and Korzeniowski, Filip and Böck, Sebastian and Arzt, Andreas and Widmer, Gerhard},
journal = {arXiv preprint arXiv:1612.05153},
link = {https://arxiv.org/pdf/1612.05153.pdf},
title = {On the potential of simple framewise approaches to piano transcription},
year = {2016}
}
@inproceedings{Korzeniowski2016a,
address = {New York, NY, USA},
author = {Korzeniowski, Filip and Widmer, Gerhard},
booktitle = {ISMIR},
code = {https://github.com/fdlm/chordrec/tree/master/experiments/ismir2016},
link = {https://arxiv.org/pdf/1612.05065.pdf},
note = {http://fdlm.github.io/post/deepchroma},
task = {Chord recognition},
title = {Feature learning for chord recognition: The deep chroma extractor},
year = {2016}
}
@inproceedings{Korzeniowski2016b,
address = {Salerno, Italy},
author = {Korzeniowski, Filip and Widmer, Gerhard},
booktitle = {IEEE_MLSP},
link = {https://www.researchgate.net/profile/Filip_Korzeniowski/publication/305590295_A_Fully_Convolutional_Deep_Auditory_Model_for_Musical_Chord_Recognition/links/579486ba08aed51475cc6958/A-Fully-Convolutional-Deep-Auditory-Model-for-Musical-Chord-Recognition.pdf?_iepl%5BhomeFeedViewId%5D=HTzFFmKPia2YminQ4psHT5at&_iepl%5Bcontexts%5D%5B0%5D=pcfhf&_iepl%5BinteractionType%5D=publicationDownload&origin=publication_detail&ev=pub_int_prw_xdl&msrp=Dz_6LKHzYcPyP-LmgZPF-m63ayZ6k0entFEntooiu_e32zfETNQXKPQSTFOI87NONIIQuUQdnUtwORdomTXfteTrb09KiAIdDtBJnw_02P6JeRr5zu2eyaCG.2Uxsi_eENxtbYL39lvorIK8LofRYhkgpUHzpzmVzkIEiyHc0wUY87rEa4PH1qbXi4k4RyagHUsA2IsZtewnprglORjx2v9Cwbk9ZfQ.cd67BaqtHul_hE6SX6vUFKuldz81aH6dWq-cYMkq5vQKCHcvB8l9zgeM694Efb_r2wBB5GT9idt3OLeME0UxVHI6ROxamgK3LMNlSw.JtZXAo9HhR9t-8Wl3gxJgnoM4--rtmDEUDbXSWezbFyU-CoB_nyfxbRQ4kdoN4-5aJ3Tgx4YHdikicqAhc_cezB2ZntjxkB4rEDx1A},
organization = {IEEE},
pages = {1--6},
task = {Chord recognition},
title = {A fully convolutional deep auditory model for musical chord recognition},
year = {2016}
}
@inproceedings{Li2016,
architecture = {RNN & BILSTM & ELM},
author = {Li, Xinxing and Xianyu, Haishu and Tian, Jiashen and Chen, Wenxiao and Meng, Fanhang and Xu, Mingxing and Cai, Lianhong},
booktitle = {ICASSP},
link = {http://ieeexplore.ieee.org/document/7471734/},
organization = {IEEE},
pages = {544--548},
task = {MER},
title = {A deep bidirectional long short-term memory based multi-scale approach for music dynamic emotion prediction},
year = {2016}
}
@inproceedings{Liu2016,
architecture = {CNN},
author = {Liu, Jen-Yu and Yang, Yi-Hsuan},
booktitle = {ACM_MM},
code = {https://github.com/ciaua/clip2frame},
link = {http://mac.citi.sinica.edu.tw/~yang/pub/liu16mm.pdf},
organization = {ACM},
pages = {1048--1057},
title = {Event localization in music auto-tagging},
year = {2016}
}
@inproceedings{Lostanlen2016,
author = {Lostanlen, Vincent and Cella, Carmine-Emanuele},
booktitle = {ISMIR},
code = {https://github.com/lostanlen/ismir2016},
link = {https://github.com/lostanlen/ismir2016/blob/master/paper/lostanlen_ismir2016.pdf},
task = {Instrument recognition},
title = {Deep convolutional networks on the pitch spiral for musical instrument recognition},
year = {2016}
}
@inproceedings{Mehri2017,
architecture = {RNN},
author = {Mehri, Soroush and Kumar, Kundan and Gulrajani, Ishaan and Kumar, Rithesh and Jain, Shubham and Sotelo, Jose and Courville, Aaron and Bengio, Yoshua},
booktitle = {ICLR},
code = {https://github.com/soroushmehr/sampleRNN_ICLR2017},
dataset = {[32 Beethoven’s piano sonatas gathered from https://archive.org](https://soundcloud.com/samplernn/sets)},
link = {https://openreview.net/pdf?id=SkxKPDv5xl},
note = {https://arxiv.org/pdf/1612.07837.pdf},
task = {Composition},
title = {SampleRNN: An unconditional end-to-end neural audio generation model},
year = {2016}
}
@unpublished{Phan2016,
architecture = {CNN},
author = {Phan, Huy and Hertel, Lars and Maass, Marco and Mertins, Alfred},
dataset = {[RWC](https://staff.aist.go.jp/m.goto/RWC-MDB/)},
journal = {arXiv preprint arXiv:1604.06338},
link = {https://arxiv.org/pdf/1604.06338.pdf},
note = {Compare MFCC & deep learning},
task = {Event recognition},
title = {Robust audio event recognition with 1-max pooling convolutional neural networks},
year = {2016}
}
@inproceedings{Pons2016,
address = {Bucharest, Romania},
author = {Pons, Jordi and Lidy, Thomas and Serra, Xavier},
booktitle = {CBMI},
code = {https://github.com/jordipons/},
dataset = {[Ballroom](http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html)},
doi = {10.1109/CBMI.2016.7500246},
isbn = {978-1-4673-8695-1},
link = {http://jordipons.me/media/CBMI16.pdf},
month = {Jun.},
title = {Experimenting with musically motivated convolutional neural networks},
year = {2016}
}
@inproceedings{Rigaud2016,
address = {New York, NY, USA},