-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalpha_beta.cu
180 lines (149 loc) · 5.42 KB
/
alpha_beta.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#include "alpha_beta.h"
__device__ void cudaSearch(Node *node, int player, int maximizer, int ply) {
if (ply == 0){
node->alpha = diffeval(maximizer, node->board);
node->beta = diffeval(maximizer, node->board);
return;
}
int * moves = legalmoves(node->player, node->board);
if(moves[0] == 0) return;
for (int i = 1; i < moves[0]; i++) {
int * newboard = copyboard(node->board);
int move = moves[i];
makemove(moves[1], opponent(node->player), newboard);
int ntm = nexttoplay(newboard, opponent(node->player), 0);
if (ntm == 0){
node->alpha = diffeval(node->player, node->board);
node->beta = diffeval(node->player, node->board);
return;
}
ntm = cudanexttoplay(newboard, opponent(node->player), 0);
// makemove(move, node->player, newboard);
Node *newNode = node;
newNode->move = move;
newNode->player = ntm;
newNode->alpha = node->alpha;
newNode->beta = node->beta;
newNode->board = newboard;
newNode->parent = node;
// search child
cudaSearch(newNode, ntm, maximizer, ply - 1);
if (player == ntm) {
node->beta = min(node->beta, newNode->alpha);
}
if (opponent(player) == ntm){
node->alpha = max(node->alpha, newNode->beta);
}
if (node->alpha >= node->beta) {
return;
}
free(newNode);
}
}
__global__
void cudaTreeKernel(int * moves, int * board, int * values, int player, int maximizer,
int alpha, int beta, int ply) {
// only one thread does high-level tasks
if (threadIdx.x == 0) {
// make one new node per block
if(moves[0] == 0) return;
int move = moves[blockIdx.x];
int * newboard = copyboard(board);
makemove(move, player, newboard);
int ntm = cudanexttoplay(newboard, player, 0);
Node *newNode = new Node;
newNode->move = move;
newNode->player = ntm;
newNode->alpha = alpha;
newNode->beta = beta;
newNode->board = newboard;
cudaSearch(newNode, player, maximizer, ply);
// update the values we care about - if the parent node is a maximizing node,
// it cares about the child alpha values
if (player == maximizer) {
values[blockIdx.x] = newNode->beta;
}
if (opponent(player) == maximizer){
values[blockIdx.x] = newNode->alpha;
}
free(newNode);
}
}
void cudaMinMaxKernel(int * moves, int * board, int *values, int player, int maximizer, int alpha, int beta, int numMoves, int ply) {
cudaTreeKernel<<<numMoves, 32>>>(moves, board, values, player, maximizer, alpha, beta, ply);
}
int search(Node *node, int maximizer, int ply) {
// Do not search any deeper
if (ply == 0){
node->alpha = diffeval(maximizer, node->board);
node->beta = diffeval(maximizer, node->board);
return NULL;
}
// make copy of board and find moves
int * newboard = copyboard(node->board);
int * moves = legalmoves(node->player, node->board);
makemove(moves[1], opponent(node->player), newboard);
int ntm = cudanexttoplay(newboard, node->player, 0);
Node *newNode = node;
newNode->move = moves[1];
newNode->player = ntm;
newNode->alpha = node->alpha;
newNode->beta = node->beta;
newNode->board = newboard;
newNode->parent = node;
int best = search(newNode,maximizer, ply - 1);
int *values;
values = (int *)calloc(moves[0], sizeof(int));
if (node->player == maximizer) {
values[0] = newNode->alpha;
}
if (opponent(node->player) == maximizer) {
values[0] = newNode->beta;
}
/* GPU search the rest of the child nodes */
int numMoves = moves[0];
int *dev_moves;
int *dev_board;
int *dev_values;
int *tmoves = (int *)malloc(numMoves * sizeof(int));
for (int i = 1; i < moves[0]; i++) {
tmoves[i] = moves[i];
}
cudaMalloc((void **) &dev_moves, numMoves * sizeof(int));
cudaMalloc((void **) &dev_board, BOARDSIZE * sizeof(int));
cudaMalloc((void **) &dev_values, numMoves * sizeof(int));
cudaMemcpy(dev_board, &(node->board), BOARDSIZE * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_moves, tmoves, numMoves * sizeof(int), cudaMemcpyHostToDevice);
cudaMemset(dev_values, 0, (numMoves) * sizeof(int));
// call kernel to search the rest of the children in parallel
cudaMinMaxKernel(dev_moves, dev_board, dev_values, ntm, maximizer,
node->alpha, node->beta, numMoves, ply);
// copy remaining child values into host array
cudaMemcpy(values, dev_values, numMoves * sizeof(int), cudaMemcpyDeviceToHost);
// find the best move
int index = 1;
if (node->player == maximizer) {
int best = WIN+1;
for (int i = 1; i <= numMoves; i++) {
if (values[i] < best) {
best = values[i];
index = i;
}
}
node->beta = best;
} else {
int best = LOSS - 1;
for (int i = 1; i <= numMoves; i++) {
if (values[i] > best) {
best = values[i];
index = i;
}
}
node->alpha = best;
}
// printf("%d\n", moves[index]);
cudaFree(dev_values);
cudaFree(dev_board);
cudaFree(dev_moves);
return moves[index];
}