forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquant_online.py
157 lines (144 loc) · 4.65 KB
/
quant_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from datasets.dataset import Dataset
from models import HumanSegMobile, HumanSegLite, HumanSegServer
import transforms
MODEL_TYPE = ['HumanSegMobile', 'HumanSegLite', 'HumanSegServer']
def parse_args():
parser = argparse.ArgumentParser(description='HumanSeg training')
parser.add_argument(
'--model_type',
dest='model_type',
help=
"Model type for traing, which is one of ('HumanSegMobile', 'HumanSegLite', 'HumanSegServer')",
type=str,
default='HumanSegMobile')
parser.add_argument(
'--data_dir',
dest='data_dir',
help='The root directory of dataset',
type=str)
parser.add_argument(
'--train_list',
dest='train_list',
help='Train list file of dataset',
type=str)
parser.add_argument(
'--val_list',
dest='val_list',
help='Val list file of dataset',
type=str,
default=None)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the model snapshot',
type=str,
default='./output/quant_train')
parser.add_argument(
'--num_classes',
dest='num_classes',
help='Number of classes',
type=int,
default=2)
parser.add_argument(
'--num_epochs',
dest='num_epochs',
help='Number epochs for training',
type=int,
default=2)
parser.add_argument(
'--batch_size',
dest='batch_size',
help='Mini batch size',
type=int,
default=128)
parser.add_argument(
'--learning_rate',
dest='learning_rate',
help='Learning rate',
type=float,
default=0.001)
parser.add_argument(
'--pretrained_weights',
dest='pretrained_weights',
help='The model path for quant',
type=str,
default=None)
parser.add_argument(
'--save_interval_epochs',
dest='save_interval_epochs',
help='The interval epochs for save a model snapshot',
type=int,
default=1)
parser.add_argument(
"--image_shape",
dest="image_shape",
help="The image shape for net inputs.",
nargs=2,
default=[192, 192],
type=int)
return parser.parse_args()
def train(args):
train_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.Resize(args.image_shape),
transforms.Normalize()
])
eval_transforms = transforms.Compose(
[transforms.Resize(args.image_shape),
transforms.Normalize()])
train_dataset = Dataset(
data_dir=args.data_dir,
file_list=args.train_list,
transforms=train_transforms,
num_workers='auto',
buffer_size=100,
parallel_method='thread',
shuffle=True)
eval_dataset = None
if args.val_list is not None:
eval_dataset = Dataset(
data_dir=args.data_dir,
file_list=args.val_list,
transforms=eval_transforms,
num_workers='auto',
buffer_size=100,
parallel_method='thread',
shuffle=False)
if args.model_type == 'HumanSegMobile':
model = HumanSegMobile(num_classes=2)
elif args.model_type == 'HumanSegLite':
model = HumanSegLite(num_classes=2)
elif args.model_type == 'HumanSegServer':
model = HumanSegServer(num_classes=2)
else:
raise ValueError(
"--model_type: {} is set wrong, it shold be one of ('HumanSegMobile', "
"'HumanSegLite', 'HumanSegServer')".format(args.model_type))
model.train(
num_epochs=args.num_epochs,
train_dataset=train_dataset,
train_batch_size=args.batch_size,
eval_dataset=eval_dataset,
save_interval_epochs=args.save_interval_epochs,
save_dir=args.save_dir,
pretrained_weights=args.pretrained_weights,
learning_rate=args.learning_rate,
quant=True)
if __name__ == '__main__':
args = parse_args()
train(args)