forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
111 lines (96 loc) · 3.28 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import os.path as osp
import cv2
import numpy as np
import tqdm
import utils
import models
import transforms
def parse_args():
parser = argparse.ArgumentParser(
description='HumanSeg inference and visualization')
parser.add_argument(
'--model_dir',
dest='model_dir',
help='Model path for inference',
type=str)
parser.add_argument(
'--data_dir',
dest='data_dir',
help='The root directory of dataset',
type=str)
parser.add_argument(
'--test_list',
dest='test_list',
help='Test list file of dataset',
type=str)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the inference results',
type=str,
default='./output/result')
parser.add_argument(
"--image_shape",
dest="image_shape",
help="The image shape for net inputs.",
nargs=2,
default=[192, 192],
type=int)
return parser.parse_args()
def mkdir(path):
sub_dir = osp.dirname(path)
if not osp.exists(sub_dir):
os.makedirs(sub_dir)
def infer(args):
test_transforms = transforms.Compose(
[transforms.Resize(args.image_shape),
transforms.Normalize()])
model = models.load_model(args.model_dir)
added_saveed_path = osp.join(args.save_dir, 'added')
mat_saved_path = osp.join(args.save_dir, 'mat')
scoremap_saved_path = osp.join(args.save_dir, 'scoremap')
with open(args.test_list, 'r') as f:
files = f.readlines()
for file in tqdm.tqdm(files):
file = file.strip()
im_file = osp.join(args.data_dir, file)
im = cv2.imread(im_file)
result = model.predict(im, transforms=test_transforms)
# save added image
added_image = utils.visualize(im_file, result, weight=0.6)
added_image_file = osp.join(added_saveed_path, file)
mkdir(added_image_file)
cv2.imwrite(added_image_file, added_image)
# save score map
score_map = result['score_map'][:, :, 1]
score_map = (score_map * 255).astype(np.uint8)
score_map_file = osp.join(scoremap_saved_path, file)
mkdir(score_map_file)
cv2.imwrite(score_map_file, score_map)
# save mat image
score_map = np.expand_dims(score_map, axis=-1)
mat_image = np.concatenate([im, score_map], axis=2)
mat_file = osp.join(mat_saved_path, file)
ext = osp.splitext(mat_file)[-1]
mat_file = mat_file.replace(ext, '.png')
mkdir(mat_file)
cv2.imwrite(mat_file, mat_image)
if __name__ == '__main__':
args = parse_args()
infer(args)