forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbg_replace.py
286 lines (257 loc) · 10.9 KB
/
bg_replace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# coding: utf8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import os.path as osp
import cv2
import numpy as np
from utils.humanseg_postprocess import postprocess, threshold_mask
import models
import transforms
def parse_args():
parser = argparse.ArgumentParser(description='HumanSeg inference for video')
parser.add_argument(
'--model_dir',
dest='model_dir',
help='Model path for inference',
type=str)
parser.add_argument(
'--image_path',
dest='image_path',
help='Image including human',
type=str,
default=None)
parser.add_argument(
'--background_image_path',
dest='background_image_path',
help='Background image for replacing',
type=str,
default=None)
parser.add_argument(
'--video_path',
dest='video_path',
help='Video path for inference',
type=str,
default=None)
parser.add_argument(
'--background_video_path',
dest='background_video_path',
help='Background video path for replacing',
type=str,
default=None)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the inference results',
type=str,
default='./output')
parser.add_argument(
"--image_shape",
dest="image_shape",
help="The image shape for net inputs.",
nargs=2,
default=[192, 192],
type=int)
return parser.parse_args()
def predict(img, model, test_transforms):
model.arrange_transform(transforms=test_transforms, mode='test')
img, im_info = test_transforms(img)
img = np.expand_dims(img, axis=0)
result = model.exe.run(
model.test_prog,
feed={'image': img},
fetch_list=list(model.test_outputs.values()))
score_map = result[1]
score_map = np.squeeze(score_map, axis=0)
score_map = np.transpose(score_map, (1, 2, 0))
return score_map, im_info
def recover(img, im_info):
keys = list(im_info.keys())
for k in keys[::-1]:
if k == 'shape_before_resize':
h, w = im_info[k][0], im_info[k][1]
img = cv2.resize(img, (w, h), cv2.INTER_LINEAR)
elif k == 'shape_before_padding':
h, w = im_info[k][0], im_info[k][1]
img = img[0:h, 0:w]
return img
def bg_replace(score_map, img, bg):
h, w, _ = img.shape
bg = cv2.resize(bg, (w, h))
score_map = np.repeat(score_map[:, :, np.newaxis], 3, axis=2)
comb = (score_map * img + (1 - score_map) * bg).astype(np.uint8)
return comb
def infer(args):
resize_h = args.image_shape[1]
resize_w = args.image_shape[0]
test_transforms = transforms.Compose(
[transforms.Resize((resize_w, resize_h)),
transforms.Normalize()])
model = models.load_model(args.model_dir)
if not osp.exists(args.save_dir):
os.makedirs(args.save_dir)
# 图像背景替换
if args.image_path is not None:
if not osp.exists(args.image_path):
raise Exception('The --image_path is not existed: {}'.format(
args.image_path))
if args.background_image_path is None:
raise Exception('The --background_image_path is not set. Please set it')
else:
if not osp.exists(args.background_image_path):
raise Exception('The --background_image_path is not existed: {}'.format(
args.background_image_path))
img = cv2.imread(args.image_path)
score_map, im_info = predict(img, model, test_transforms)
score_map = score_map[:, :, 1]
score_map = recover(score_map, im_info)
bg = cv2.imread(args.background_image_path)
save_name = osp.basename(args.image_path)
save_path = osp.join(args.save_dir, save_name)
result = bg_replace(score_map, img, bg)
cv2.imwrite(save_path, result)
# 视频背景替换,如果提供背景视频则以背景视频作为背景,否则采用提供的背景图片
else:
is_video_bg = False
if args.background_video_path is not None:
if not osp.exists(args.background_video_path):
raise Exception('The --background_video_path is not existed: {}'.format(
args.background_video_path))
is_video_bg = True
elif args.background_image_path is not None:
if not osp.exists(args.background_image_path):
raise Exception('The --background_image_path is not existed: {}'.format(
args.background_image_path))
else:
raise Exception(
'Please offer backgound image or video. You should set --backbground_iamge_paht or --background_video_path'
)
disflow = cv2.DISOpticalFlow_create(
cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
prev_gray = np.zeros((resize_h, resize_w), np.uint8)
prev_cfd = np.zeros((resize_h, resize_w), np.float32)
is_init = True
if args.video_path is not None:
print('Please wait. It is computing......')
if not osp.exists(args.video_path):
raise Exception('The --video_path is not existed: {}'.format(
args.video_path))
cap_video = cv2.VideoCapture(args.video_path)
fps = cap_video.get(cv2.CAP_PROP_FPS)
width = int(cap_video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
save_name = osp.basename(args.video_path)
save_name = save_name.split('.')[0]
save_path = osp.join(args.save_dir, save_name + '.avi')
cap_out = cv2.VideoWriter(
save_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps,
(width, height))
if is_video_bg:
cap_bg = cv2.VideoCapture(args.background_video_path)
frames_bg = cap_bg.get(cv2.CAP_PROP_FRAME_COUNT)
current_frame_bg = 1
else:
img_bg = cv2.imread(args.background_image_path)
while cap_video.isOpened():
ret, frame = cap_video.read()
if ret:
score_map, im_info = predict(frame, model, test_transforms)
cur_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
score_map = 255 * score_map[:, :, 1]
optflow_map = postprocess(cur_gray, score_map, prev_gray, prev_cfd, \
disflow, is_init)
prev_gray = cur_gray.copy()
prev_cfd = optflow_map.copy()
is_init = False
optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
optflow_map = threshold_mask(
optflow_map, thresh_bg=0.2, thresh_fg=0.8)
score_map = recover(optflow_map, im_info)
#循环读取背景帧
if is_video_bg:
ret_bg, frame_bg = cap_bg.read()
if ret_bg:
if current_frame_bg == frames_bg:
current_frame_bg = 1
cap_bg.set(cv2.CAP_PROP_POS_FRAMES, 0)
else:
break
current_frame_bg += 1
comb = bg_replace(score_map, frame, frame_bg)
else:
comb = bg_replace(score_map, frame, img_bg)
cap_out.write(comb)
else:
break
if is_video_bg:
cap_bg.release()
cap_video.release()
cap_out.release()
# 当没有输入预测图像和视频的时候,则打开摄像头
else:
cap_video = cv2.VideoCapture(0)
if not cap_video.isOpened():
raise IOError("Error opening video stream or file, "
"--video_path whether existing: {}"
" or camera whether working".format(
args.video_path))
return
if is_video_bg:
cap_bg = cv2.VideoCapture(args.background_video_path)
frames_bg = cap_bg.get(cv2.CAP_PROP_FRAME_COUNT)
current_frame_bg = 1
else:
img_bg = cv2.imread(args.background_image_path)
while cap_video.isOpened():
ret, frame = cap_video.read()
if ret:
score_map, im_info = predict(frame, model, test_transforms)
cur_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
score_map = 255 * score_map[:, :, 1]
optflow_map = postprocess(cur_gray, score_map, prev_gray, prev_cfd, \
disflow, is_init)
prev_gray = cur_gray.copy()
prev_cfd = optflow_map.copy()
is_init = False
optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
optflow_map = threshold_mask(
optflow_map, thresh_bg=0.2, thresh_fg=0.8)
score_map = recover(optflow_map, im_info)
#循环读取背景帧
if is_video_bg:
ret_bg, frame_bg = cap_bg.read()
if ret_bg:
if current_frame_bg == frames_bg:
current_frame_bg = 1
cap_bg.set(cv2.CAP_PROP_POS_FRAMES, 0)
else:
break
current_frame_bg += 1
comb = bg_replace(score_map, frame, frame_bg)
else:
comb = bg_replace(score_map, frame, img_bg)
cv2.imshow('HumanSegmentation', comb)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
if is_video_bg:
cap_bg.release()
cap_video.release()
if __name__ == "__main__":
args = parse_args()
infer(args)