forked from roboticcam/matlab_demos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhybrid_gmm.m
121 lines (81 loc) · 3.13 KB
/
hybrid_gmm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
% This is a little visualisation program, shows how one obtains efficient
% sampling using Hybrid-Monte Carlo:
%
% ( Duane, Simon; A.D. Kennedy, Brian J. Pendleton, and Duncan, Roweth (3).
% "Hybrid Monte Carlo". Physics Letters B 195 (2): 216–222.)
%
% The demo is sample Gaussian Mixture Model (GMM) using HMC. Note that you can sample
% GMM exactly, and there is absolutely no reason to use HMC. This is just
% for demo and visulisation only.
%
% Coded by Richard Xu @UTS ([email protected])
%
% April 2012
function hybrid_gmm()
clear;
clc;
% GMM parameters
sigma(1) = 5.0;
sigma(2) = 3.0;
mu(1) = -6.0;
mu(2) = 6.0;
w(1) = 0.3;
w(2) = 0.7;
% start the sampling
N = 100;
q_samples = mvnrnd( mu(2), sigma(2), N);
Z = 1/N * sum( mvnpdf( q_samples, mu(2)-3, sigma(2)+2 ) ./ mvnpdf( q_samples, mu(2), sigma(2) ) );
PROPOSAL_SIGMA = 5.0;
i = 1;
accept(i) = 0.0;
rho = 3;
N = 500;
L = 5;
for t = 1:N
x_0 = accept(i);
u_star = mvnrnd( 0, 1);
delta = each_step( x_0, mu, sigma, w);
u_0 = u_star + rho/2 * delta;
for l=1:L
if l == 1
x(l) = x_0 + rho * u_0;
else
x(l) = x(l-1) + rho * u(l-1);
end
if l == 1
u(l) = u_0;
else
u(l) = u(l-1);
end
delta = each_step( x(l), mu, sigma, w);
u(l) = u(l) + rho * delta;
end
p_x_L = w(1) * mvnpdf( x(L), mu(1), sigma(1)) + w(2) * mvnpdf( x(L), mu(2), sigma(2));
p_x = w(1) * mvnpdf( accept(i), mu(1), sigma(1)) + w(2) * mvnpdf( accept(i), mu(2), sigma(2));
mh_ratio = min(1, ( p_x_L / p_x ) * exp ( -1/2 * ( u(L)^2 - u_star^2 )));
v = rand;
if v < mh_ratio
accept(i+1) = x(L);
i = i + 1;
end
end
accept = accept(1,1:size(accept,2) * 0.9);
figure(1);
x_func = -15:0.1:12;
g1 = w(1) * 1/sigma(1) * exp( -1/2 * ( x_func - mu(1)) .^ 2 / sigma(1)^2 );
g2 = w(2) * 1/sigma(2) * exp( -1/2 * ( x_func - mu(2)) .^ 2 / sigma(2)^2 );
plot(x_func,g1+g2);
hold on;
first_term = (w(1)*(2*mu(1) - 2*x_func))./(2*sigma(1)^3*exp((mu(1) - x_func).^2/(2*sigma(1)^2))) + (w(2)*(2*mu(2) - 2*x_func))./( 2*sigma(2)^3*exp((mu(2) - x_func).^2/(2*sigma(2)^2)));
final_term = w(1)./(sigma(1)*exp((mu(1) - x_func).^2 /(2*sigma(1)^2))) + w(2)./(sigma(2)*exp((mu(2) - x_func).^2 /(2*sigma(2)^2)));
log_diff = first_term ./ final_term;
plot(x_func, log_diff, 'color',[1 0 0]);
hold on;
plot( accept(:), zeros([1 size(accept,2)])','.');
hold off;
fprintf('acceptance ratio = %f\n', size(accept,2)/((N+1)*0.9));
legend('f(x)', 'D log(f(x)) / D x', 'samples')
end
function step_value = each_step( xx, mu, sigma, w)
step_value = ((w(1)*(2*mu(1) - 2*xx))/(2*sigma(1)^3*exp((mu(1) - xx)^2/(2*sigma(1)^2))) + (w(2)*(2*mu(2) - 2*xx))/(2*sigma(2)^3*exp((mu(2) - xx)^2/(2*sigma(2)^2))))/(w(1)/(sigma(1)*exp((mu(1) - xx)^2/(2*sigma(1)^2))) + w(2)/(sigma(2)*exp((mu(2) - xx)^2/(2*sigma(2)^2))));
end