forked from memisevic/grammar-cells
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgatedAutoencoder.py
165 lines (145 loc) · 8.49 KB
/
gatedAutoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy, pylab
import cPickle
import theano
import theano.tensor as T
import theano.tensor.signal.conv
from theano.tensor.shared_randomstreams import RandomStreams
SMALL = 0.000001
class FactoredGatedAutoencoder(object):
def __init__(self, numvisX, numvisY, numfac, nummap, output_type,
corruption_type='zeromask', corruption_level=0.0,
wxf_init=None, wyf_init=None,
numpy_rng=None, theano_rng=None):
self.numvisX = numvisX
self.numvisY = numvisY
self.numfac = numfac
self.nummap = nummap
self.output_type = output_type
self.corruption_type = corruption_type
self.corruption_level = corruption_level
self.inputs = T.matrix(name='inputs')
if not numpy_rng:
numpy_rng = numpy.random.RandomState(1)
if not theano_rng:
theano_rng = RandomStreams(1)
if wxf_init is None:
wxf_init = numpy_rng.normal(size=(numvisX, numfac)).astype(theano.config.floatX)*0.001
if wyf_init is None:
wyf_init = numpy_rng.normal(size=(numvisY, numfac)).astype(theano.config.floatX)*0.001
self.whf_init = numpy.exp(numpy_rng.uniform(low=-3.0, high=-2.0, size=(nummap, numfac)).astype(theano.config.floatX))
self.whf_in_init = numpy_rng.uniform(low=-0.01, high=+0.01, size=(nummap, numfac)).astype(theano.config.floatX)
self.whf = theano.shared(value = self.whf_init, name='whf')
self.whf_in = theano.shared(value = self.whf_in_init, name='whf_in')
self.wxf = theano.shared(value = wxf_init, name = 'wxf')
self.bvisX = theano.shared(value = numpy.zeros(numvisX, dtype=theano.config.floatX), name='bvisX')
self.wyf = theano.shared(value = wyf_init, name = 'wyf')
self.bvisY = theano.shared(value = numpy.zeros(numvisY, dtype=theano.config.floatX), name='bvisY')
self.bmap = theano.shared(value = 0.0*numpy.ones(nummap, dtype=theano.config.floatX), name='bmap')
self.params = [self.wxf, self.wyf, self.whf_in, self.whf, self.bmap, self.bvisX, self.bvisY]
self.inputsX = self.inputs[:, :numvisX]
self.inputsY = self.inputs[:, numvisX:]
if self.corruption_level > 0.0:
if self.corruption_type=='zeromask':
self._corruptedX = theano_rng.binomial(size=self.inputsX.shape, n=1, p=1.0-self.corruption_level, dtype=theano.config.floatX) * self.inputsX
self._corruptedY = theano_rng.binomial(size=self.inputsY.shape, n=1, p=1.0-self.corruption_level, dtype=theano.config.floatX) * self.inputsY
elif self.corruption_type=='gaussian':
self._corruptedX = theano_rng.normal(size=self.inputsX.shape, avg=0.0, std=self.corruption_level, dtype=theano.config.floatX) + self.inputsX
self._corruptedY = theano_rng.normal(size=self.inputsY.shape, avg=0.0, std=self.corruption_level, dtype=theano.config.floatX) + self.inputsY
elif self.corruption_type=='xor':
self._corruptedX = T.cast(T.xor(theano_rng.binomial(size=self.inputsX.shape, n=1, p=self.corruption_level, dtype='int8'), T.cast(self.inputsX, 'int8')), theano.config.floatX)
self._corruptedY = T.cast(T.xor(theano_rng.binomial(size=self.inputsY.shape, n=1, p=self.corruption_level, dtype='int8'), T.cast(self.inputsY, 'int8')), theano.config.floatX)
elif self.corruption_type=='none':
self._corruptedX = self.inputsX
self._corruptedY = self.inputsY
else:
assert False, "unknown corruption type"
else:
self._corruptedX = self.inputsX
self._corruptedY = self.inputsY
self._factorsX = T.dot(self._corruptedX, self.wxf)
self._factorsY = T.dot(self._corruptedY, self.wyf)
self._factorsXNonoise = T.dot(self.inputsX, self.wxf)
self._factorsYNonoise = T.dot(self.inputsY, self.wyf)
self._mappings = T.nnet.sigmoid(T.dot(self._factorsX*self._factorsY, self.whf_in.T)+self.bmap)
self._mappingsNonoise = T.nnet.sigmoid(T.dot(self._factorsXNonoise*self._factorsYNonoise, self.whf_in.T)+self.bmap)
self._factorsH = T.dot(self._mappings, self.whf)
self._outputX_acts = T.dot(self._factorsY*self._factorsH, self.wxf.T)+self.bvisX
self._outputY_acts = T.dot(self._factorsX*self._factorsH, self.wyf.T)+self.bvisY
if self.output_type == 'binary':
self._reconsX = T.nnet.sigmoid(self._outputX_acts)
self._reconsY = T.nnet.sigmoid(self._outputY_acts)
elif self.output_type == 'real':
self._reconsX = self._outputX_acts
self._reconsY = self._outputY_acts
elif self.output_type == 'multinoulli':
self._reconsX = T.nnet.softmax(self._outputX_acts)
self._reconsY = T.nnet.softmax(self._outputY_acts)
else:
assert False, "unknown output type (has to be either 'binary', 'real' or 'multinoulli')"
if self.output_type == 'binary':
self._costpercase = - T.sum(
0.5* (self.inputsY*T.log(self._reconsY) + (1.0-self.inputsY)*T.log(1.0-self._reconsY))
+0.5* (self.inputsX*T.log(self._reconsX) + (1.0-self.inputsX)*T.log(1.0-self._reconsX)),
axis=1)
elif self.output_type == 'real':
self._costpercase = T.sum(0.5*((self.inputsX-self._reconsX)**2)
+0.5*((self.inputsY-self._reconsY)**2), axis=1)
elif self.output_type == 'multinoulli':
self._costpercase = -0.5*(T.sum(T.log(self._reconsX[T.arange(self.inputs.shape[0]),self.inputsX]), axis=1)
+T.sum(T.log(self._reconsY[T.arange(self.inputs.shape[0]),self.inputsY]), axis=1))
else:
assert False, "unknown output type (has to be either 'binary', 'real' or 'multinoulli')"
self._cost = T.mean(self._costpercase)
self._cost_pure = T.mean(self._costpercase)
self._grads = T.grad(self._cost, self.params)
self.corruptedX = theano.function([self.inputs], self._corruptedX)
self.corruptedY = theano.function([self.inputs], self._corruptedY)
self.mappings = theano.function([self.inputs], self._mappings)
self.mappingsNonoise = theano.function([self.inputs], self._mappingsNonoise)
self.reconsX = theano.function([self.inputs], self._reconsX)
self.reconsY = theano.function([self.inputs], self._reconsY)
self.cost = theano.function([self.inputs], self._cost)
self.cost_pure = theano.function([self.inputs], self._cost_pure)
self.grads = theano.function([self.inputs], self._grads)
def get_cudandarray_value(x):
if type(x)==theano.sandbox.cuda.CudaNdarray:
return numpy.array(x.__array__()).flatten()
else:
return x.flatten()
self.grad = lambda x: numpy.concatenate([get_cudandarray_value(g) for g in self.grads(x)])
def updateparams(self, newparams):
def inplaceupdate(x, new):
x[...] = new
return x
paramscounter = 0
for p in self.params:
pshape = p.get_value().shape
pnum = numpy.prod(pshape)
p.set_value(inplaceupdate(p.get_value(borrow=True), newparams[paramscounter:paramscounter+pnum].reshape(*pshape)), borrow=True)
paramscounter += pnum
def get_params(self):
return numpy.concatenate([p.get_value().flatten() for p in self.params])
def save(self, filename):
numpy.save(filename, self.get_params())
def load(self, filename):
self.updateparams(numpy.load(filename))
def normalizefilters(self, center=True):
def inplacemult(x, v):
x[:, :] *= v
return x
def inplacesubtract(x, v):
x[:, :] -= v
return x
nwxf = (self.wxf.get_value().std(0)+SMALL)[numpy.newaxis, :]
nwyf = (self.wyf.get_value().std(0)+SMALL)[numpy.newaxis, :]
meannxf = nwxf.mean()
meannyf = nwyf.mean()
wxf = self.wxf.get_value(borrow=True)
wyf = self.wyf.get_value(borrow=True)
# CENTER FILTERS
if center:
self.wxf.set_value(inplacesubtract(wxf, wxf.mean(0)[numpy.newaxis,:]), borrow=True)
self.wyf.set_value(inplacesubtract(wyf, wyf.mean(0)[numpy.newaxis,:]), borrow=True)
# FIX STANDARD DEVIATION
self.wxf.set_value(inplacemult(wxf, meannxf/nwxf),borrow=True)
self.wyf.set_value(inplacemult(wyf, meannyf/nwyf),borrow=True)