-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsift_icl_off.py
225 lines (183 loc) · 8.02 KB
/
sift_icl_off.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from huggingface_hub import login
from dotenv import load_dotenv
import os
import torch
import numpy as np
import faiss
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
import evaluate
from activeft.sift import Retriever
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
load_dotenv()
api_key = os.getenv("HF_API_KEY")
if api_key:
login(api_key)
print("Logged in successfully.")
else:
print("API key not found. Please check your .env file.")
class SIFTModel:
def __init__(
self,
model_name = 'meta-llama/Llama-3.1-8B-Instruct',
eval_dataset_path='math_splits/test.jsonl',
retrieval_dataset_path='math_splits/train.jsonl',
embedding_model_name='Snowflake/snowflake-arctic-embed-l',
k=3
):
self.model_name = model_name
self.eval_dataset = eval_dataset_path
self.retrieval_dataset = retrieval_dataset_path
self.embedding_model_name = embedding_model_name
self.k = k
if not hasattr(self, 'quantization_config'):
self.quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
if not hasattr(self, 'model'):
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
quantization_config=self.quantization_config,
device_map="auto",
)
if not hasattr(self, 'embedding_model'):
self.embedding_model = SentenceTransformer(self.embedding_model_name)
if not hasattr(self, 'tokenizer'):
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self._prepare_retrieval_index()
def _prepare_retrieval_index(self):
print("Preparing FAISS retrieval index...")
embeddings = []
self.contexts = []
self.solutions = []
index_size = 0
with open(self.retrieval_dataset, 'r') as file:
for line in tqdm(file):
#CHANGE THIS TO CHANGE NO. OF EMBEDDINGS IN FAISS INDEX
if index_size == 1000:
break
index_size +=1
try:
sample = json.loads(line.strip()) # Parse each line as a JSON object
problem = sample.get("problem", "")
solution = sample.get("solution", "")
self.contexts.append(problem)
self.solutions.append(solution)
combined_text = f"Problem: {problem} \n Solution: {solution}"
embedded = self.embedding_model.encode(combined_text, convert_to_tensor=True)
embeddings.append(embedded.cpu().numpy())
except Exception as e:
print(f"Error processing sample: {e}")
continue
# Stack embeddings into a single NumPy array
embeddings = np.vstack(embeddings).astype('float32')
print("Embedding array shape:", embeddings.shape)
print("Normalizing embeddings.....")
faiss.normalize_L2(embeddings)
dimension = embeddings.shape[1]
faiss_index = faiss.IndexFlatIP(dimension)
faiss_index.add(embeddings)
print(f"FAISS index created with {len(embeddings)} embeddings.")
self.retriever = Retriever(
index=faiss_index,
llambda=0.02,
fast=True,
only_faiss=False
)
def retrieve_nearest_neighbors(self, query, k=3):
"""
Retrieve k nearest neighbors for a given query.
Args:
query (str): Input problem to find similar examples.
k (int, optional): Number of neighbors to retrieve. Defaults to self.k.
Returns:
list: Retrieved contexts and solutions.
"""
k = k or self.k
# Embed query and reshape for SIFT
query_embedding = self.embedding_model.encode(query).astype('float32')
query_embedding = query_embedding.reshape(1, -1) # Ensure it's a 2D array of shape (1, d)
print(query_embedding.shape) # Shape should be (1, d)
faiss.normalize_L2(query_embedding)
# Search with SIFT
result = self.retriever.search(query_embedding, N=k, K=None)
# Inspect the return value to check how many elements it returns
#print(f"For Search result: {result}")
D, I, V, retrieval_time = result
print(' For the above result set of indexes are', I)
# Retrieve contexts and solutions
retrieved_contexts = [self.contexts[i] for i in I]
retrieved_solutions = [self.solutions[i] for i in I]
return retrieved_contexts, retrieved_solutions
def generate_with_retrieval(self, query, max_length=4096):
"""
Generate response with retrieved in-context examples
"""
retrieved_contexts, retrieved_solutions = self.retrieve_nearest_neighbors(query)
prompt ="Output <|eot_id|> at the end of final solution. Use \\boxed{} only once in each solution, only for the final answer of the asked question."
prompt += "Here are some similar math problems and their solutions:\n\n"
for ctx, sol in zip(retrieved_contexts, retrieved_solutions):
prompt += f"Problem: {ctx}\nSolution: {sol}\n\n"
prompt += f"Now solve this problem:\n{query}\nSolution:"
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=max_length).to(self.model.device)
outputs = self.model.generate(
**inputs,
max_length=max_length,
eos_token_id=self.tokenizer.eos_token_id,
num_return_sequences=1,
temperature =1e-5,
do_sample=False,
)
generated_solution = self.tokenizer.decode(outputs[0][len(inputs['input_ids'][0]):], skip_special_tokens=True)
return generated_solution, retrieved_contexts, retrieved_solutions
def evaluate_model(self, num_samples=None):
"""
Evaluate model on ScaleQuest-Math dataset
Args:
num_samples (int, optional): Number of samples to evaluate. If None, uses entire dataset.
Returns:
dict: Evaluation results containing predictions and metrics
"""
self.results =[]
num_evaluated = 0
check=0
with open(self.eval_dataset, 'r') as file:
for line in tqdm(file):
if num_evaluated == num_samples:
break
num_evaluated += 1
try:
item = json.loads(line.strip()) # Parse each line as a JSON object
query = item.get("problem", "")
generated_solution, retrieved_problems,retrieved_solutions = self.generate_with_retrieval(query)
if check ==0:
print('QUERY--------------')
print(query)
print('GENERATED SOLUTION--------------')
print(generated_solution)
print('GROUND TRUTH--------------')
print(item.get('solution', ''))
check +=1
self.results.append({
'query': query,
'prediction': generated_solution,
'ground_truth': item.get('solution', ''),
'retrieved_problems': retrieved_problems,
'retrieved_solutions':retrieved_solutions,
})
except Exception as e:
print(f"Error processing query: {e}")
continue
return self.results
if __name__=='__main__':
import json
sift_model = SIFTModel()
results=[]
print("Starting evaluation...")
results = sift_model.evaluate_model()
with open('evaluation_results_sift.json', 'w') as f:
json.dump(results, f, indent=4)