Skip to content

Latest commit

 

History

History
31 lines (26 loc) · 1.12 KB

readme.md

File metadata and controls

31 lines (26 loc) · 1.12 KB

Classify MNIST dataset using TensorFlow

Run tf_mnist.py in local conda environment.

$ pip install tensorflow
$ az ml experiment submit -c local tf_mnist.py

Run tf_mnist.py in a local Docker container.

$ az ml experiment submit -c docker tf_mnist.py

Run tf_mnist.py in a Docker container in a remote machine. Note you need to create/configure myvm.compute.

$ az ml experiment submit -c myvm tf_mnist.py

Run tf_mnist.py in a Docker container in a remote machine with GPU.

  • Create a new compute context, nam it gpu (or any arbitary name)
  • Use az ml computetarget attach to target the GPU equipped VM.
  • In conda_dependencies.yml file, use tensorflow-gpu instead of tensorflow.
  • In gpu.compute file, use microsoft/mmlspark:gpu as the base Docker image.
  • In gpu.compute file, add a line nvidiaDocker: true
  • In gpu.runconfig file, set Framework to Python
  • Now run the script.
$ az ml experiment submit -c gpu tf_mnist.py

For more information on using GPU in Vienna execution, read this article.