-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathgraphics.go
834 lines (742 loc) · 23.9 KB
/
graphics.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
package chart
import (
"fmt"
"image/color"
"math"
)
// MinimalGraphics is the interface any graphics driver must implement,
// so that he can fall back to the generic routines for the higher level
// outputs.
type MinimalGraphics interface {
Background() (r, g, b, a uint8) // Color of background
FontMetrics(font Font) (fw float32, fh int, mono bool) // Return fontwidth and -height in pixel
TextLen(t string, font Font) int // Length=width of t in screen units if set on font
Line(x0, y0, x1, y1 int, style Style) // Draw line from (x0,y0) to (x1,y1)
Text(x, y int, t string, align string, rot int, f Font) // Put t at (x,y) rotated by rot aligned [[tcb]][lcr]
}
// BasicGraphics is an interface of the most basic graphic primitives.
// Any type which implements BasicGraphics can use generic implementations
// of the Graphics methods.
type BasicGraphics interface {
MinimalGraphics
Symbol(x, y int, style Style) // Put symbol s at (x,y)
Rect(x, y, w, h int, style Style) // Draw (w x h) rectangle at (x,y)
Wedge(x, y, ro, ri int, phi, psi float64, style Style) // Wedge
Path(x, y []int, style Style) // Path of straight lines
Options() PlotOptions // access to current PlotOptions
}
// Graphics is the interface all chart drivers have to implement
type Graphics interface {
BasicGraphics
Dimensions() (int, int) // character-width / height
Begin() // start of chart drawing
End() // Done, cleanup
// All stuff is preprocessed: sanitized, clipped, strings formated, integer coords,
// screen coordinates,
XAxis(xr Range, ys, yms int, options PlotOptions) // Draw x axis xr at screen position ys (and yms if mirrored)
YAxis(yr Range, xs, xms int, options PlotOptions) // Same for y axis.
Scatter(points []EPoint, plotstyle PlotStyle, style Style) // Points, Lines and Line+Points
Boxes(boxes []Box, width int, style Style) // Boxplots
Bars(bars []Barinfo, style Style) // any type of histogram/bars
Rings(wedeges []Wedgeinfo, x, y, ro, ri int) // Pie/ring diagram elements
Key(x, y int, key Key, options PlotOptions) // place key at x,y
}
// Barinfo describes a rectangular bar (e.g. in a histogram or a bar plot).
type Barinfo struct {
x, y int // (x,y) of top left corner;
w, h int // width and heigt
t, tp string // label text and text position '[oi][tblr]' or 'c'
f Font // font of text
}
// Wedgeinfo describes a wedge in a pie chart.
type Wedgeinfo struct {
Phi, Psi float64 // Start and ende of wedge. Fuill circle if |phi-psi| > 4pi
Text, Tp string // label text and text position: [ico]
Style Style // style of this wedge
Font Font // font of text
Shift int // Highlighting of wedge
}
// GenericTextLen tries to determine the width in pixel of t if rendered into mg in using font.
func GenericTextLen(mg MinimalGraphics, t string, font Font) (width int) {
// TODO: how handle newlines? same way like Text does
fw, _, mono := mg.FontMetrics(font)
if mono {
for _ = range t {
width++
}
width = int(float32(width)*fw + 0.5)
} else {
var length float32
for _, r := range t {
if w, ok := CharacterWidth[int(r)]; ok {
length += w
} else {
length += 20 // save above average
}
}
length /= averageCharacterWidth
length *= fw
width = int(length + 0.5)
}
return
}
// SanitizeRect returns the top left corner and the positive width and height of the
// given (possibly unsanitized) rectangle taking into account the line width r.
func SanitizeRect(x, y, w, h, r int) (int, int, int, int) {
if w < 0 {
x += w
w = -w
}
if h < 0 {
y += h
h = -h
}
d := (imax(1, r) - 1) / 2
// TODO: what if w-2D <= 0 ?
return x + d, y + d, w - 2*d, h - 2*d
}
// GenericRect draws a rectangle of size w x h at (x,y). Drawing is done
// by simple lines only.
func GenericRect(mg MinimalGraphics, x, y, w, h int, style Style) {
x, y, w, h = SanitizeRect(x, y, w, h, style.LineWidth)
if style.FillColor != nil {
fs := Style{LineWidth: 1, LineColor: style.FillColor, LineStyle: SolidLine}
for i := 1; i < h; i++ {
mg.Line(x+1, y+i, x+w-1, y+i, fs)
}
}
mg.Line(x, y, x+w, y, style)
mg.Line(x+w, y, x+w, y+h, style)
mg.Line(x+w, y+h, x, y+h, style)
mg.Line(x, y+h, x, y, style)
}
// GenericPath is the incomplete implementation of a list of points
// connected by straight lines. Incomplete: Dashed lines won't work properly.
func GenericPath(mg MinimalGraphics, x, y []int, style Style) {
n := imin(len(x), len(y))
for i := 1; i < n; i++ {
mg.Line(x[i-1], y[i-1], x[i], y[i], style)
}
}
func drawXTics(bg BasicGraphics, rng Range, y, ym, ticLen int, options PlotOptions) {
xe := rng.Data2Screen(rng.Max)
// Grid below tics
if rng.TicSetting.Grid > GridOff {
for ticcnt, tic := range rng.Tics {
x := rng.Data2Screen(tic.Pos)
if ticcnt >= 0 && ticcnt <= len(rng.Tics)-1 && rng.TicSetting.Grid == GridLines {
// fmt.Printf("Gridline at x=%d\n", x)
bg.Line(x, y-1, x, ym+1, elementStyle(options, GridLineElement))
} else if rng.TicSetting.Grid == GridBlocks {
if ticcnt%2 == 1 {
x0 := rng.Data2Screen(rng.Tics[ticcnt-1].Pos)
bg.Rect(x0, ym, x-x0, y-ym, elementStyle(options, GridBlockElement))
} else if ticcnt == len(rng.Tics)-1 && x < xe-1 {
bg.Rect(x, ym, xe-x, y-ym, elementStyle(options, GridBlockElement))
}
}
}
}
// Tics on top
ticstyle := elementStyle(options, MajorTicElement)
ticfont := ticstyle.Font
for _, tic := range rng.Tics {
x := rng.Data2Screen(tic.Pos)
lx := rng.Data2Screen(tic.LabelPos)
// Tics
switch rng.TicSetting.Tics {
case 0:
bg.Line(x, y-ticLen, x, y+ticLen, ticstyle)
case 1:
bg.Line(x, y-ticLen, x, y, ticstyle)
case 2:
bg.Line(x, y, x, y+ticLen, ticstyle)
default:
}
// Mirrored Tics
if rng.TicSetting.Mirror >= 2 {
switch rng.TicSetting.Tics {
case 0:
bg.Line(x, ym-ticLen, x, ym+ticLen, ticstyle)
case 1:
bg.Line(x, ym, x, ym+ticLen, ticstyle)
case 2:
bg.Line(x, ym-ticLen, x, ym, ticstyle)
default:
}
}
if !rng.TicSetting.HideLabels {
// Tic-Label
if rng.Time && tic.Align == -1 {
bg.Line(x, y+ticLen, x, y+2*ticLen, ticstyle)
bg.Text(lx, y+2*ticLen, tic.Label, "tl", 0, ticfont)
} else {
bg.Text(lx, y+2*ticLen, tic.Label, "tc", 0, ticfont)
}
}
}
}
// GenericXAxis draws the x-axis with range rng solely by graphic primitives of bg.
// The x-axis is drawn at y on the screen and the mirrored x-axis is drawn at ym.
func GenericXAxis(bg BasicGraphics, rng Range, y, ym int, options PlotOptions) {
_, fontheight, _ := bg.FontMetrics(elementStyle(options, MajorTicElement).Font)
var ticLen int = 0
if !rng.TicSetting.Hide {
ticLen = imin(12, imax(4, fontheight/2))
}
xa, xe := rng.Data2Screen(rng.Min), rng.Data2Screen(rng.Max)
// Axis label and range limits
aly := y + 2*ticLen
if !rng.TicSetting.Hide {
aly += (3 * fontheight) / 2
}
if rng.ShowLimits {
font := elementStyle(options, RangeLimitElement).Font
if rng.Time {
bg.Text(xa, aly, rng.TMin.Format("2006-01-02 15:04:05"), "tl", 0, font)
bg.Text(xe, aly, rng.TMax.Format("2006-01-02 15:04:05"), "tr", 0, font)
} else {
bg.Text(xa, aly, fmt.Sprintf("%g", rng.Min), "tl", 0, font)
bg.Text(xe, aly, fmt.Sprintf("%g", rng.Max), "tr", 0, font)
}
}
if rng.Label != "" { // draw label _after_ (=over) range limits
font := elementStyle(options, MajorAxisElement).Font
bg.Text((xa+xe)/2, aly, " "+rng.Label+" ", "tc", 0, font)
}
// Tics and Grid
if !rng.TicSetting.Hide {
drawXTics(bg, rng, y, ym, ticLen, options)
}
// Axis itself, mirrord axis and zero
bg.Line(xa, y, xe, y, elementStyle(options, MajorAxisElement))
if rng.TicSetting.Mirror >= 1 {
bg.Line(xa, ym, xe, ym, elementStyle(options, MinorAxisElement))
}
if rng.ShowZero && rng.Min < 0 && rng.Max > 0 {
z := rng.Data2Screen(0)
bg.Line(z, y, z, ym, elementStyle(options, ZeroAxisElement))
}
}
func drawYTics(bg BasicGraphics, rng Range, x, xm, ticLen int, options PlotOptions) {
ye := rng.Data2Screen(rng.Max)
// Grid below tics
if rng.TicSetting.Grid > GridOff {
for ticcnt, tic := range rng.Tics {
y := rng.Data2Screen(tic.Pos)
if rng.TicSetting.Grid == GridLines {
if ticcnt > 0 && ticcnt < len(rng.Tics)-1 {
// fmt.Printf("Gridline at x=%d\n", x)
bg.Line(x+1, y, xm-1, y, elementStyle(options, GridLineElement))
}
} else if rng.TicSetting.Grid == GridBlocks {
if ticcnt%2 == 1 {
y0 := rng.Data2Screen(rng.Tics[ticcnt-1].Pos)
bg.Rect(x, y0, xm-x, y-y0, elementStyle(options, GridBlockElement))
} else if ticcnt == len(rng.Tics)-1 && y > ye+1 {
bg.Rect(x, ye, xm-x, y-ye, elementStyle(options, GridBlockElement))
}
}
}
}
// Tics on top
ticstyle := elementStyle(options, MajorTicElement)
ticfont := ticstyle.Font
for _, tic := range rng.Tics {
y := rng.Data2Screen(tic.Pos)
ly := rng.Data2Screen(tic.LabelPos)
// Tics
switch rng.TicSetting.Tics {
case 0:
bg.Line(x-ticLen, y, x+ticLen, y, ticstyle)
case 1:
bg.Line(x, y, x+ticLen, y, ticstyle)
case 2:
bg.Line(x-ticLen, y, x, y, ticstyle)
default:
}
// Mirrored tics
if rng.TicSetting.Mirror >= 2 {
switch rng.TicSetting.Tics {
case 0:
bg.Line(xm-ticLen, y, xm+ticLen, y, ticstyle)
case 1:
bg.Line(xm-ticLen, y, xm, y, ticstyle)
case 2:
bg.Line(xm, y, xm+ticLen, y, ticstyle)
default:
}
}
if !rng.TicSetting.HideLabels {
// Label
if rng.Time && tic.Align == 0 { // centered tic
bg.Line(x-2*ticLen, y, x+ticLen, y, ticstyle)
bg.Text(x-ticLen, ly, tic.Label, "cr", 0, ticfont)
} else {
bg.Text(x-2*ticLen, ly, tic.Label, "cr", 0, ticfont)
}
}
}
}
// GenericYAxis draws the y-axis with the range rng solely by graphic primitives of bg.
// The y.axis and the mirrord y-axis are drawn at x and ym respectively.
func GenericYAxis(bg BasicGraphics, rng Range, x, xm int, options PlotOptions) {
font := elementStyle(options, MajorAxisElement).Font
_, fontheight, _ := bg.FontMetrics(font)
var ticLen int = 0
if !rng.TicSetting.Hide {
ticLen = imin(10, imax(4, fontheight/2))
}
ya, ye := rng.Data2Screen(rng.Min), rng.Data2Screen(rng.Max)
// Label and axis ranges
alx := 2 * fontheight
if rng.ShowLimits {
/* TODO
st := bg.Style("rangelimit")
if rng.Time {
bg.Text(xa, aly, rng.TMin.Format("2006-01-02 15:04:05"), "tl", 0, st)
bg.Text(xe, aly, rng.TMax.Format("2006-01-02 15:04:05"), "tr", 0, st)
} else {
bg.Text(xa, aly, fmt.Sprintf("%g", rng.Min), "tl", 0, st)
bg.Text(xe, aly, fmt.Sprintf("%g", rng.Max), "tr", 0, st)
}
*/
}
if rng.Label != "" {
y := (ya + ye) / 2
bg.Text(alx, y, rng.Label, "bc", 90, font)
}
if !rng.TicSetting.Hide {
drawYTics(bg, rng, x, xm, ticLen, options)
}
// Axis itself, mirrord axis and zero
bg.Line(x, ya, x, ye, elementStyle(options, MajorAxisElement))
if rng.TicSetting.Mirror >= 1 {
bg.Line(xm, ya, xm, ye, elementStyle(options, MinorAxisElement))
}
if rng.ShowZero && rng.Min < 0 && rng.Max > 0 {
z := rng.Data2Screen(0)
bg.Line(x, z, xm, z, elementStyle(options, ZeroAxisElement))
}
}
// GenericScatter draws the given points according to style.
// style.FillColor is used as color of error bars and style.FontSize is used
// as the length of the endmarks of the error bars. Both have suitable defaults
// if the FontXyz are not set. Point coordinates and errors must be provided
// in screen coordinates.
func GenericScatter(bg BasicGraphics, points []EPoint, plotstyle PlotStyle, style Style) {
// First pass: Error bars
ebs := style
ebs.LineColor, ebs.LineWidth, ebs.LineStyle = ebs.FillColor, 1, SolidLine
if ebs.LineColor == nil {
ebs.LineColor = color.NRGBA{0x40, 0x40, 0x40, 0xff}
}
if ebs.LineWidth == 0 {
ebs.LineWidth = 1
}
for _, p := range points {
xl, yl, xh, yh := p.BoundingBox()
// fmt.Printf("Draw %d: %f %f-%f; %f %f-%f\n", i, p.DeltaX, xl,xh, p.DeltaY, yl,yh)
if !math.IsNaN(p.DeltaX) {
bg.Line(int(xl), int(p.Y), int(xh), int(p.Y), ebs)
}
if !math.IsNaN(p.DeltaY) {
// fmt.Printf(" Draw %d,%d to %d,%d\n",int(p.X), int(yl), int(p.X), int(yh))
bg.Line(int(p.X), int(yl), int(p.X), int(yh), ebs)
}
}
// Second pass: Line
if (plotstyle&PlotStyleLines) != 0 && len(points) > 0 {
lastx, lasty := int(points[0].X), int(points[0].Y)
for i := 1; i < len(points); i++ {
x, y := int(points[i].X), int(points[i].Y)
bg.Line(lastx, lasty, x, y, style)
lastx, lasty = x, y
}
}
// Third pass: symbols
if (plotstyle&PlotStylePoints) != 0 && len(points) != 0 {
for _, p := range points {
// fmt.Printf("Point %d at %d,%d\n", i, int(p.X), int(p.Y))
bg.Symbol(int(p.X), int(p.Y), style)
}
}
}
// GenericBoxes draws box plots. (Default implementation for box plots).
// The values for each box in boxes are in screen coordinates!
func GenericBoxes(bg BasicGraphics, boxes []Box, width int, style Style) {
if width%2 == 0 {
width++
}
hbw := (width - 1) / 2
for _, d := range boxes {
x := int(d.X)
q1, q3 := int(d.Q1), int(d.Q3)
// DebugLogger.Printf("q1=%d q3=%d q3-q1=%d", q1,q3,q3-q1)
bg.Rect(x-hbw, q1, width, q3-q1, style)
if !math.IsNaN(d.Med) {
med := int(d.Med)
bg.Line(x-hbw, med, x+hbw, med, style)
}
if !math.IsNaN(d.Avg) {
bg.Symbol(x, int(d.Avg), style)
}
if !math.IsNaN(d.High) {
bg.Line(x, q3, x, int(d.High), style)
}
if !math.IsNaN(d.Low) {
bg.Line(x, q1, x, int(d.Low), style)
}
for _, y := range d.Outliers {
bg.Symbol(x, int(y), style)
}
}
}
// GenericBars draws the bars in the given style using bg.
// TODO: Is Bars and Generic Bars useful at all? Replaceable by rect?
func GenericBars(bg BasicGraphics, bars []Barinfo, style Style) {
for _, b := range bars {
bg.Rect(b.x, b.y, b.w, b.h, style)
if b.t != "" {
var tx, ty int
var a string
_, fh, _ := bg.FontMetrics(b.f)
if fh > 1 {
fh /= 2
}
switch b.tp {
case "ot":
tx, ty, a = b.x+b.w/2, b.y-fh, "bc"
case "it":
tx, ty, a = b.x+b.w/2, b.y+fh, "tc"
case "ib":
tx, ty, a = b.x+b.w/2, b.y+b.h-fh, "bc"
case "ob":
tx, ty, a = b.x+b.w/2, b.y+b.h+fh, "tc"
case "ol":
tx, ty, a = b.x-fh, b.y+b.h/2, "cr"
case "il":
tx, ty, a = b.x+fh, b.y+b.h/2, "cl"
case "or":
tx, ty, a = b.x+b.w+fh, b.y+b.h/2, "cl"
case "ir":
tx, ty, a = b.x+b.w-fh, b.y+b.h/2, "cr"
default:
tx, ty, a = b.x+b.w/2, b.y+b.h/2, "cc"
}
bg.Text(tx, ty, b.t, a, 0, b.f)
}
}
}
// GenericWedge draws a pie/wedge just by lines
func GenericWedge(mg MinimalGraphics, x, y, ro, ri int, phi, psi, ecc float64, style Style) {
for phi < 0 {
phi += 2 * math.Pi
}
for psi < 0 {
psi += 2 * math.Pi
}
for phi >= 2*math.Pi {
phi -= 2 * math.Pi
}
for psi >= 2*math.Pi {
psi -= 2 * math.Pi
}
// DebugLogger.Printf("GenericWedge centered at (%d,%d) from %.1f° to %.1f°, radius %d/%d (e=%.2f)", x, y, 180*phi/math.Pi, 180*psi/math.Pi, ro, ri, ecc)
if ri > ro {
panic("ri > ro is not possible")
}
if style.FillColor != nil {
fillWedge(mg, x, y, ro, ri, phi, psi, ecc, style)
}
roe, rof := float64(ro)*ecc, float64(ro)
rie, rif := float64(ri)*ecc, float64(ri)
xa, ya := int(math.Cos(phi)*roe)+x, y-int(math.Sin(phi)*rof)
xc, yc := int(math.Cos(psi)*roe)+x, y-int(math.Sin(psi)*rof)
xai, yai := int(math.Cos(phi)*rie)+x, y-int(math.Sin(phi)*rif)
xci, yci := int(math.Cos(psi)*rie)+x, y-int(math.Sin(psi)*rif)
if math.Abs(phi-psi) >= 4*math.Pi {
phi, psi = 0, 2*math.Pi
} else {
if ri > 0 {
mg.Line(xai, yai, xa, ya, style)
mg.Line(xci, yci, xc, yc, style)
} else {
mg.Line(x, y, xa, ya, style)
mg.Line(x, y, xc, yc, style)
}
}
var xb, yb int
exit := phi < psi
for rho := phi; !exit || rho < psi; rho += 0.05 { // aproximate circle by more than 120 corners polygon
if rho >= 2*math.Pi {
exit = true
rho -= 2 * math.Pi
}
xb, yb = int(math.Cos(rho)*roe)+x, y-int(math.Sin(rho)*rof)
mg.Line(xa, ya, xb, yb, style)
xa, ya = xb, yb
}
mg.Line(xb, yb, xc, yc, style)
if ri > 0 {
exit := phi < psi
for rho := phi; !exit || rho < psi; rho += 0.1 { // aproximate circle by more than 60 corner polygon
if rho >= 2*math.Pi {
exit = true
rho -= 2 * math.Pi
}
xb, yb = int(math.Cos(rho)*rie)+x, y-int(math.Sin(rho)*rif)
mg.Line(xai, yai, xb, yb, style)
xai, yai = xb, yb
}
mg.Line(xb, yb, xci, yci, style)
}
}
// Fill wedge with center (xi,yi), radius ri from alpha to beta with style.
// Precondition: 0 <= beta < alpha < pi/2
func fillQuarterWedge(mg MinimalGraphics, xi, yi, ri int, alpha, beta, e float64, style Style, quadrant int) {
if alpha < beta {
// DebugLogger.Printf("Swaping alpha and beta")
alpha, beta = beta, alpha
}
// DebugLogger.Printf("fillQuaterWedge from %.1f to %.1f radius %d in quadrant %d.", 180*alpha/math.Pi, 180*beta/math.Pi, ri, quadrant)
r := float64(ri)
ta, tb := math.Tan(alpha), math.Tan(beta)
for y := int(r * math.Sin(alpha)); y >= 0; y-- {
yf := float64(y)
x0 := yf / ta
x1 := yf / tb
x2 := math.Sqrt(r*r - yf*yf)
// DebugLogger.Printf("y=%d x0=%.2f x1=%.2f x2=%.2f border=%t", y, x0, x1, x2, (x2<x1))
if math.IsNaN(x1) || x2 < x1 {
x1 = x2
}
var xx0, xx1, yy int
switch quadrant {
case 0:
xx0 = int(x0*e+0.5) + xi
xx1 = int(x1*e-0.5) + xi
yy = yi - y
case 3:
xx0 = int(x0*e+0.5) + xi
xx1 = int(x1*e-0.5) + xi
yy = yi + y
case 2:
xx0 = xi - int(x0*e+0.5)
xx1 = xi - int(x1*e-0.5)
yy = yi + y
case 1:
xx0 = xi - int(x0*e+0.5)
xx1 = xi - int(x1*e-0.5)
yy = yi - y
default:
panic("No such quadrant.")
}
// DebugLogger.Printf("Line %d,%d to %d,%d", xx0,yy, xx1,yy)
mg.Line(xx0, yy, xx1, yy, style)
}
}
func quadrant(w float64) int {
return int(math.Floor(2 * w / math.Pi))
}
func mapQ(w float64, q int) float64 {
switch q {
case 0:
return w
case 1:
return math.Pi - w
case 2:
return w - math.Pi
case 3:
return 2*math.Pi - w
default:
panic("No such quadrant")
}
}
// Fill wedge with center (xi,yi), radius ri from alpha to beta with style.
// Any combination of phi, psi allowed as long 0 <= phi < psi < 2pi.
func fillWedge(mg MinimalGraphics, xi, yi, ro, ri int, phi, psi, epsilon float64, style Style) {
// ls := Style{LineColor: style.FillColor, LineWidth: 1, Symbol: style.Symbol}
qPhi := quadrant(phi)
qPsi := quadrant(psi)
// DebugLogger.Printf("fillWedge from %.1f (%d) to %.1f (%d).", 180*phi/math.Pi, qPhi, 180*psi/math.Pi, qPsi)
// prepare styles for filling
style.LineColor = style.FillColor
style.LineWidth = 1
style.LineStyle = SolidLine
blank := Style{
Symbol: ' ',
LineColor: color.NRGBA{0xff, 0xff, 0xff, 0x00},
FillColor: color.NRGBA{0xff, 0xff, 0xff, 0x00},
}
for qPhi != qPsi {
// DebugLogger.Printf("qPhi = %d", qPhi)
w := float64(qPhi+1) * math.Pi / 2
if math.Abs(w-phi) > 0.01 {
fillQuarterWedge(mg, xi, yi, ro, mapQ(phi, qPhi), mapQ(w, qPhi), epsilon, style, qPhi)
if ri > 0 {
fillQuarterWedge(mg, xi, yi, ri, mapQ(phi, qPhi), mapQ(w, qPhi), epsilon, blank, qPhi)
}
}
phi = w
qPhi++
if qPhi == 4 {
// DebugLogger.Printf("Wrapped phi around")
phi, qPhi = 0, 0
}
}
if phi != psi {
// DebugLogger.Printf("Last wedge")
fillQuarterWedge(mg, xi, yi, ro, mapQ(phi, qPhi), mapQ(psi, qPhi), epsilon, style, qPhi)
if ri > 0 {
fillQuarterWedge(mg, xi, yi, ri, mapQ(phi, qPhi), mapQ(psi, qPhi), epsilon, blank, qPhi)
}
}
}
// GeenricRings draws wedges for pie/ring charts charts. The pie's/ring's center is at (x,y)
// with ri and ro the inner and outer diameter. Eccentricity allows to correct for non-square
// pixels (e.g. in text mode).
func GenericRings(bg BasicGraphics, wedges []Wedgeinfo, x, y, ro, ri int, eccentricity float64) {
// DebugLogger.Printf("GenericRings with %d wedges center %d,%d, radii %d/%d, ecc=%.3f)", len(wedges), x, y, ro, ri, eccentricity)
for _, w := range wedges {
// Correct center
d := float64(w.Style.LineWidth) / 2
// cphi, sphi := math.Cos(w.Phi), math.Sin(w.Phi)
// cpsi, spsi := math.Cos(w.Psi), math.Sin(w.Psi)
delta := (w.Psi - w.Phi) / 2
SinDelta := math.Sin(delta)
gamma := (w.Phi + w.Psi) / 2
k := d / SinDelta
shift := float64(w.Shift)
kx, ky := (k+shift)*math.Cos(gamma), (k+shift)*math.Sin(gamma)
DebugLogger.Printf("Center adjustment (lw=%d, d=%.2f), for wedge %d°-%d° of (%.1f,%.1f), k=%.1f",
w.Style.LineWidth, d, int(180*w.Phi/math.Pi), int(180*w.Psi/math.Pi), kx, ky, k)
xi, yi := x+int(kx+0.5), y+int(ky+0.5)
roc, ric := ro-int(d+k), ri-int(d+k)
bg.Wedge(xi, yi, roc, ric, w.Phi, w.Psi, w.Style)
if w.Text != "" {
_, fh, _ := bg.FontMetrics(w.Font)
fh += 0
alpha := (w.Phi + w.Psi) / 2
var rt int
if ri > 0 {
rt = (ri + ro) / 2
} else {
rt = ro - 3*fh
if rt <= ro/2 {
rt = ro - 2*fh
}
}
// DebugLogger.Printf("Text %s at %d° r=%d", w.Text, int(180*alpha/math.Pi), rt)
tx := int(float64(rt)*math.Cos(alpha)*eccentricity+0.5) + x
ty := y + int(float64(rt)*math.Sin(alpha)+0.5)
bg.Text(tx, ty, w.Text, "cc", 0, w.Font)
}
}
}
// GenericCircle approximates a circle of radius r around (x,y) with lines.
func GenericCircle(bg BasicGraphics, x, y, r int, style Style) {
// TODO: fill
x0, y0 := x+r, y
rf := float64(r)
for a := 0.2; a < 2*math.Pi; a += 0.2 {
x1, y1 := int(rf*math.Cos(a))+x, int(rf*math.Sin(a))+y
bg.Line(x0, y0, x1, y1, style)
x0, y0 = x1, y1
}
}
func polygon(bg BasicGraphics, x, y []int, style Style) {
n := len(x) - 1
for i := 0; i < n; i++ {
bg.Line(x[i], y[i], x[i+1], y[i+1], style)
}
bg.Line(x[n], y[n], x[0], y[0], style)
}
// GenericSymbol draws the symbol defined by style at (x,y).
func GenericSymbol(bg BasicGraphics, x, y int, style Style) {
f := style.SymbolSize
if f == 0 {
f = 1
}
if style.LineWidth <= 0 {
style.LineWidth = 1
}
if style.SymbolColor == nil {
style.SymbolColor = style.LineColor
if style.SymbolColor == nil {
style.SymbolColor = style.FillColor
if style.SymbolColor == nil {
style.SymbolColor = color.NRGBA{0, 0, 0, 0xff}
}
}
}
style.LineColor = style.SymbolColor
const n = 5 // default size
a := int(n*f + 0.5) // standard
b := int(n/2*f + 0.5) // smaller
c := int(1.155*n*f + 0.5) // triangel long sist
d := int(0.577*n*f + 0.5) // triangle short dist
e := int(0.866*n*f + 0.5) // diagonal
switch style.Symbol {
case '*':
bg.Line(x-e, y-e, x+e, y+e, style)
bg.Line(x-e, y+e, x+e, y-e, style)
fallthrough
case '+':
bg.Line(x-a, y, x+a, y, style)
bg.Line(x, y-a, x, y+a, style)
case 'X':
bg.Line(x-e, y-e, x+e, y+e, style)
bg.Line(x-e, y+e, x+e, y-e, style)
case 'o':
GenericCircle(bg, x, y, a, style)
case '0':
GenericCircle(bg, x, y, a, style)
GenericCircle(bg, x, y, b, style)
case '.':
GenericCircle(bg, x, y, b, style)
case '@':
GenericCircle(bg, x, y, a, style)
for r := 1; r < a; r++ {
GenericCircle(bg, x, y, r, style)
}
bg.Line(x, y, x, y, style)
case '=':
bg.Rect(x-e, y-e, 2*e, 2*e, style)
case '#':
style.FillColor = style.LineColor
bg.Rect(x-e, y-e, 2*e, 2*e, style)
case 'A':
polygon(bg, []int{x - a, x + a, x}, []int{y + d, y + d, y - c}, style)
for j := 1; j < a; j++ {
aa, dd, cc := (j*a)/a, (j*d)/a, (j*c)/a
polygon(bg, []int{x - aa, x + aa, x}, []int{y + dd, y + dd, y - cc}, style)
}
case '%':
polygon(bg, []int{x - a, x + a, x}, []int{y + d, y + d, y - c}, style)
case 'W':
polygon(bg, []int{x - a, x + a, x}, []int{y - c, y - c, y + d}, style)
for j := 1; j < a; j++ {
aa, dd, cc := (j*a)/a, (j*d)/a, (j*c)/a
polygon(bg, []int{x - aa, x + aa, x}, []int{y - cc, y - cc, y + dd}, style)
}
case 'V':
polygon(bg, []int{x - a, x + a, x}, []int{y - c, y - c, y + d}, style)
case 'Z':
polygon(bg, []int{x - e, x, x + e, x}, []int{y, y + e, y, y - e}, style)
for j := 1; j < e; j++ {
ee := (j * e) / e
polygon(bg, []int{x - ee, x, x + ee, x}, []int{y, y + ee, y, y - ee}, style)
}
case '&':
polygon(bg, []int{x - e, x, x + e, x}, []int{y, y + e, y, y - e}, style)
default:
bg.Text(x, y, "?", "cc", 0, Font{})
}
}
func drawTitle(g Graphics, text string, style Style) {
w, _ := g.Dimensions()
_, fh, _ := g.FontMetrics(style.Font)
x, y := w/2, fh/3
g.Text(x, y, text, "tc", 0, style.Font)
}