-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcalculate_point_view_direction.py
executable file
·63 lines (50 loc) · 2.35 KB
/
calculate_point_view_direction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python3
import os
import argparse
from tqdm import tqdm
import numpy as np
from colorama import init, Fore
from utils.colmap_read_model import read_images_text, read_points3D_text, read_points3D_id_text
init(autoreset=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('model_dir', type=str,
help="model directory that contains BIN model")
parser.add_argument('--out_fn', type=str, default='view_direction.txt',
help='the view direction corresponding of 3D points')
parser.add_argument('--max_error', type=float, default=2.0)
parser.add_argument('--max_z', type=float, default=None)
parser.add_argument('--min_n_views', type=int, default=2)
args = parser.parse_args()
points_fn = os.path.join(args.model_dir, 'points3D.txt')
images_fn = os.path.join(args.model_dir, 'images.txt')
out_fn = os.path.join(args.model_dir, args.out_fn)
assert os.path.exists(points_fn)
assert os.path.exists(images_fn)
print(Fore.YELLOW + "Cal. mean view direction from {} and {} --> {}".format(
points_fn, images_fn, out_fn))
images = read_images_text(images_fn)
points = read_points3D_text(points_fn)
point_ids = read_points3D_id_text(points_fn)
assert len(point_ids) == len(points), "{} vs {}".format(len(points_fn), len(points))
print("Read {} images and {} points.".format(len(images), len(points)))
cnt = 0
with open(out_fn, 'w') as f:
for pid in tqdm(point_ids):
point = points[pid]
if point.error > args.max_error:
continue
if len(point.image_ids) <= args.min_n_views:
continue
if args.max_z and point.xyz[2] > args.max_z:
continue
img_pos = np.zeros((len(point.image_ids), 3))
for img_idx, img_id in enumerate(point.image_ids):
img_pos[img_idx] = images[img_id].twc()
directions = img_pos - point.xyz
directions = directions / np.linalg.norm(directions, ord=2, axis=1, keepdims=True)
aver_dir = np.mean(directions, axis=0)
aver_dir = aver_dir / np.linalg.norm(aver_dir)
f.write('{}\n'.format(' '.join([str(v) for v in aver_dir.tolist()])))
cnt += 1
print(Fore.GREEN + "Written {} points.".format(cnt))