-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEvolutionaryOptimizer.py
199 lines (185 loc) · 9.77 KB
/
EvolutionaryOptimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import copy
import json
from shutil import copyfile
import multiprocessing
from Helper import *
from Optimizer import Optimizer
from plot import plot_errs_final, plot_avg_errs_final, plot_dist
class EvolutionaryOptimizer(Optimizer):
def __init__(self, pop_size, max_gen, mut_rate=0.05, over_fit=None, file_lst=None, log=True, overhead_fac=0.2,
repeats=15, plot=False, avg_error_fac=0.4, clean_deg_len_fac=-0.0001, clean_avg_error_fac=0.2,
non_unique_packets_fac=0.3, unrecovered_packets_fac=0.1, chunksize=50, initialize=True,
store_state_foldername=None, seed_spacing=0, use_payload_xor=False):
super().__init__(pop_size, max_gen, log, plot, file_lst, repeats, overhead_fac, avg_error_fac,
clean_deg_len_fac, clean_avg_error_fac, non_unique_packets_fac, unrecovered_packets_fac,
chunksize, initialize, store_state_foldername=store_state_foldername,
seed_spacing=seed_spacing, use_payload_xor=use_payload_xor)
self.mut_rate = mut_rate
self.over_fit = over_fit
try:
if log:
self.dir = f"{self.store_state_foldername}/EvAlg_" + str(pop_size) + "_" + str(max_gen) + "_" + str(
mut_rate)
self.file = self.dir + "/"
self.file_con = list()
os.makedirs(self.dir, exist_ok=True)
except FileExistsError:
print("Dir already exists. Using it anyway.")
def store_state(self, filename=None):
if filename is None:
filename = f"{self.store_state_foldername}/evo_opt_state_" + str(self.finished_gen) + ".json"
super().store_state(self.get_state(), filename)
copyfile(filename, f"{self.store_state_foldername}/evo_opt_state.json")
def signal_handler(self, sig, frame):
print('Storing State...')
self.store_state()
# sys.exit(0)
def get_state(self):
state = super().get_state()
state["mut_rate"] = self.mut_rate
state["over_fit"] = self.over_fit
return state
@staticmethod
def load_from_state(filename):
with open(filename, "r") as fp:
state = json.load(fp)
pop_size = state.get("pop_size")
max_gen = state.get("max_gen")
mut_rate = state.get("mut_rate")
over_fit = state.get("over_fit")
log = state.get("log")
plot = state.get("plot")
file_lst = state.get("file_lst")
repeats = state.get("repeats")
overhead_fac = state.get("overhead_fac")
avg_error_fac = state.get("avg_error_fac")
clean_deg_len_fac = state.get("clean_deg_len_fac")
clean_avg_error_fac = state.get("clean_avg_error_fac")
non_unique_packets_fac = state.get("non_unique_packets_fac")
unrecovered_packets_fac = state.get("unrecovered_packets_fac")
chunksize = state.get("chunksize")
pop = [Distribution.Distribution.from_json(x) for x in state.get("pop")]
finished_gen = state.get("finished_gen")
finished_prev_best = Distribution.Distribution.from_json(state.get("finished_prev_best"))
finished_rungs_wo_imprv = state.get("finished_runs_wo_imprv")
tmp = EvolutionaryOptimizer(pop_size=pop_size, max_gen=max_gen, mut_rate=mut_rate, over_fit=over_fit,
log=log, plot=plot, file_lst=file_lst, repeats=repeats, overhead_fac=overhead_fac,
avg_error_fac=avg_error_fac, clean_deg_len_fac=clean_deg_len_fac,
clean_avg_error_fac=clean_avg_error_fac,
non_unique_packets_fac=non_unique_packets_fac,
unrecovered_packets_fac=unrecovered_packets_fac, chunksize=chunksize,
initialize=False)
tmp.gen_best_dist = [Distribution.Distribution.from_json(x) for x in state.get("gen_best_dist")]
tmp.gen_avg_err = state.get("gen_avg_err")
tmp.gen_avg_over = state.get("gen_avg_over")
tmp.gen_calculated_error = state.get("gen_calculated_error")
tmp.err_fit = state.get("err_fit")
tmp.calc_err_fit = state.get("calc_err_fit")
if tmp.calc_err_fit is not None:
tmp.calc_err_fit = np.poly1d(tmp.calc_err_fit)
tmp.over_fit = state.get("over_fit")
tmp.pop = pop
tmp.finished_gen = finished_gen
tmp.finish_prev_best = finished_prev_best
tmp.finished_runs_wo_imprv = finished_rungs_wo_imprv
return tmp
def optimize(self, start_gen=0):
"""
Runs max_gen iterations and computes the distribution fitnesses and new generations using multiprocessing.
:return:
"""
prev_best = self.finish_prev_best
runs_wo_imprv = self.finished_runs_wo_imprv
for gen in range(start_gen, self.max_gen):
print("########## Generation " + str(gen) + "/" + str(self.max_gen) + ". ##########")
self.signal_handler(0, 0)
sorted_dists = sorted(self.pop, key=lambda x: x.calculate_error_value())
prev_best, runs_wo_imprv = self.select_best(prev_best, runs_wo_imprv, sorted_dists)
if runs_wo_imprv >= 250:
break
else:
next_gen = compute_generation(sorted_dists, self.pop_size, mut_rate=self.mut_rate)
next_gen = self.compute_pop_fitness(next_gen)
self.gen_best_dist.append(copy.deepcopy(sorted_dists[0]))
self.gen_avg_err.append(sum([d.avg_err for d in self.pop]) / self.pop_size)
self.gen_avg_over.append(sum([d.overhead for d in self.pop]) / self.pop_size)
self.gen_clean_avg_err.append(sum([d.clean_avg_error for d in self.pop]) / self.pop_size)
self.gen_calculated_error.append(sum([d.calculate_error_value() for d in self.pop]) / self.pop_size)
if self.plot and gen % 25 == 0 and gen != 0:
plot_errs_final(self.gen_best_dist, True, name=self.file + "_ev_best_results_" + str(gen))
# plot_errs_final(self.gen_best_dist, save=True, name=self.file + "best_results_" + str(gen))
plot_avg_errs_final(self.gen_clean_avg_err, self.gen_calculated_error, save=True,
name=self.file + "clean_average_results_" + str(gen))
plot_avg_errs_final(self.gen_avg_err, self.gen_calculated_error, save=True,
name=self.file + "_ev_average_results_" + str(gen))
save_to_csv(self.file_con, self.file + "_ev_optimization_log_" + str(gen))
self.finished_gen = gen
self.finished_runs_wo_imprv = runs_wo_imprv
self.finish_prev_best = prev_best
if self.log:
gen_list = [gen]
for d in self.pop:
gen_list.append((d.avg_err, d.overhead, d.dist_lst))
self.file_con.append(gen_list)
self.pop = self.create_new_gen(sorted_dists, next_gen)
self.signal_handler(0, 0)
if self.log:
plot_errs_final(self.gen_best_dist, save=True, name=self.file + "best_results")
self.err_fit, self.over_fit, self.gens = plot_avg_errs_final(self.gen_avg_err, self.gen_avg_over,
save=True,
name=self.file + "_ev_average_results_")
prev_best.save_to_txt(self.file + "_ev_best_dist")
save_to_csv(self.file_con, self.file + "_ev_optimization_log")
return prev_best
def compute_pop_fitness(self, pop):
"""
Method to utilize multiprocessing for the computation of every distribution of the given population.
:param pop:
:return:
"""
p = multiprocessing.Pool(self.cores)
calc_dists = list()
for dist in pop:
if dist.overhead is None or dist.degree_errs is None:
calc_dists.append(dist)
calc_dists = p.map(self.compute_dist_fitness, calc_dists)
p.close()
return calc_dists
def create_new_gen(self, pop_1, pop_2):
"""
Merges two generations to create a new one with pop_size distributions.
:param pop_1:
:param pop_2:
:return:
"""
pop_1.extend(pop_2)
sorted_dists = sorted(pop_1, key=lambda x: x.calculate_error_value())
return sorted_dists[:self.pop_size]
def select_best(self, prev_best: Distribution.Distribution, runs_wo_imprv, selected_dists):
"""
Selects the best distribution of the current population and plots it, if it's better than the previous best.
Adds 1 to runs_wo_imprv if no improvement were made.
:param prev_best:
:param runs_wo_imprv:
:param selected_dists:
:return:
"""
if prev_best is not None:
if prev_best.calculate_error_value() > selected_dists[0].calculate_error_value():
prev_best = copy.deepcopy(selected_dists[0])
if self.plot:
plot_dist(prev_best, True,
name=self.file + "ev_best_results_select_best_" + str(self.finished_gen))
runs_wo_imprv = 0
else:
print("----- Optimal distribution has not changed. -----")
runs_wo_imprv += 1
print("Generations best synthetic error value: " + str(
round(selected_dists[0].calculate_error_value(), 4)))
else:
prev_best = copy.deepcopy(selected_dists[0])
if self.plot:
plot_dist(prev_best, True,
name=self.file + "_ev_best_results_select_best_" + str(self.finished_gen))
return prev_best, runs_wo_imprv