-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodel.py
223 lines (200 loc) · 8.58 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
import torch.nn as nn
import torch.nn.functional as F
class GetGraph(nn.Module):
def __init__(self):
super(GetGraph, self).__init__()
def forward(self, point_cloud):
point_cloud_transpose = point_cloud.permute(0, 2, 1)
point_cloud_inner = torch.matmul(point_cloud, point_cloud_transpose)
point_cloud_inner = -2 * point_cloud_inner
point_cloud_square = torch.sum(torch.mul(point_cloud, point_cloud), dim=2, keepdim=True)
point_cloud_square_tranpose = point_cloud_square.permute(0, 2, 1)
adj_matrix = point_cloud_square + point_cloud_inner + point_cloud_square_tranpose
adj_matrix = torch.exp(-adj_matrix)
return adj_matrix
class GetLaplacian(nn.Module):
def __init__(self, normalize=True):
super(GetLaplacian, self).__init__()
self.normalize = normalize
def diag(self, mat):
# input is batch x vertices
d = []
for vec in mat:
d.append(torch.diag(vec))
return torch.stack(d)
def forward(self, adj_matrix):
if self.normalize:
D = torch.sum(adj_matrix, dim=2)
eye = torch.ones_like(D)
eye = self.diag(eye)
D = 1 / torch.sqrt(D)
D = self.diag(D)
L = eye - torch.matmul(torch.matmul(D, adj_matrix), D)
else:
D = torch.sum(adj_matrix, dim=1)
D = torch.matrix_diag(D)
L = D - adj_matrix
return L
class GetFilter(nn.Module):
def __init__(self, Fin, K, Fout):
super(GetFilter, self).__init__()
self.Fin = Fin
self.Fout = Fout
self.K = K
self.W = nn.Parameter(torch.Tensor(self.K * self.Fin, self.Fout))
nn.init.normal_(self.W, mean=0, std=0.2)
self.B = nn.Parameter(torch.Tensor(self.Fout))
nn.init.normal_(self.B, mean=0, std=0.2)
self.relu = nn.ReLU()
# def reset_parameters(self):
def forward(self, x, L):
N, M, Fin = list(x.size())
K = self.K
x0 = x.clone()
x = x0.unsqueeze(0)
# x = x.expand(-1,-1,-1,1)
def concat(x, x_):
x_ = x_.unsqueeze(0)
# x_ = x.expand(1,-1,-1)
return torch.cat((x, x_), dim=0)
if K > 1:
x1 = torch.matmul(L, x0)
x = concat(x, x1)
for k in range(2, K):
x2 = 2 * torch.matmul(L, x1) - x0
x = concat(x, x2)
x0, x1 = x1, x2
x = x.permute(1, 2, 3, 0)
x = x.reshape(N * M, Fin * K)
x = torch.matmul(x, self.W)
x = torch.add(x, self.B)
x = self.relu(x)
return x.reshape(N, M, self.Fout)
class RGCNN_Seg(nn.Module):
def __init__(self, vertice, F, K, M, regularization=0, dropout=0, batch_size=100, eval_frequency=200,
dir_name=''):
# Verify the consistency w.r.t. the number of layers.
assert len(F) == len(K)
super(RGCNN_Seg, self).__init__()
# Keep the useful Laplacians only. May be zero.
self.vertice = vertice
# Print information about NN architecture.
Ngconv = len(F)
Nfc = len(M)
print('NN architecture')
print(' input: M_0 = {}'.format(vertice))
for i in range(Ngconv):
print(' layer {0}: gconv{0}'.format(i + 1))
print(' representation: M_{0} * F_{1}= {2} * {3} = {4}'.format(
i, i + 1, vertice, F[i], vertice * F[i]))
F_last = F[i - 1] if i > 0 else 1
print(' weights: F_{0} * F_{1} * K_{1} = {2} * {3} * {4} = {5}'.format(
i, i + 1, F_last, F[i], K[i], F_last * F[i] * K[i]))
print(' biases: F_{} = {}'.format(i + 1, F[i]))
for i in range(Nfc):
name = 'fc{}'.format(i + 1)
print(' layer {}: {}'.format(Ngconv + i + 1, name))
print(' representation: M_{} = {}'.format(Ngconv + i + 1, M[i]))
M_last = M[i - 1] if i > 0 else vertice if Ngconv == 0 else vertice * F[-1]
print(' weights: M_{} * M_{} = {} * {} = {}'.format(
Ngconv + i, Ngconv + i + 1, M_last, M[i], M_last * M[i]))
print(' biases: M_{} = {}'.format(Ngconv + i + 1, M[i]))
# Operations
self.getGraph = GetGraph()
self.getLaplacian = GetLaplacian(normalize=True)
# Store attributes and bind operations.
self.F, self.K, self.M = F, K, M
self.regularization, self.dropout = regularization, dropout
self.batch_size, self.eval_frequency = batch_size, eval_frequency
self.dir_name = dir_name
self.regularizer = []
for i in range(len(F)):
if i == 0:
layer = GetFilter(Fin=6, K=K[i], Fout=F[i])
else:
layer = GetFilter(Fin=F[i - 1], K=K[i], Fout=F[i])
setattr(self, 'gcn%d' % i, layer)
def forward(self, x, cat):
L = self.getGraph(x)
L = self.getLaplacian(L)
# cat = torch.unsqueeze(cat,1)
# cat = torch.zeros(self.batch_size, self.class_size).scatter_(1, cat, 1)
# cat = torch.unsqueeze(cat,1)
# cat = cat.expand(-1,self.vertice,-1).double()
# x = torch.cat((x,cat),dim=2)
for i in range(len(self.F)):
x = getattr(self, 'gcn%d' % i)(x, L)
self.regularizer.append(x)
return x
class RGCNN_Cls(nn.Module):
def __init__(self, vertice, F, K, M, regularization=0, dropout=0, batch_size=100, eval_frequency=200,
dir_name=''):
# Verify the consistency w.r.t. the number of layers.
assert len(F) == len(K)
super(RGCNN_Cls, self).__init__()
# Keep the useful Laplacians only. May be zero.
self.vertice = vertice
# Print information about NN architecture.
Ngconv = len(F)
Nfc = len(M)
print('NN architecture')
print(' input: M_0 = {}'.format(vertice))
for i in range(Ngconv):
print(' layer {0}: gconv{0}'.format(i + 1))
print(' representation: M_{0} * F_{1}= {2} * {3} = {4}'.format(
i, i + 1, vertice, F[i], vertice * F[i]))
F_last = F[i - 1] if i > 0 else 1
print(' weights: F_{0} * F_{1} * K_{1} = {2} * {3} * {4} = {5}'.format(
i, i + 1, F_last, F[i], K[i], F_last * F[i] * K[i]))
print(' biases: F_{} = {}'.format(i + 1, F[i]))
for i in range(Nfc):
name = 'fc{}'.format(i + 1)
print(' layer {}: {}'.format(Ngconv + i + 1, name))
print(' representation: M_{} = {}'.format(Ngconv + i + 1, M[i]))
M_last = M[i - 1] if i > 0 else vertice if Ngconv == 0 else vertice * F[-1]
print(' weights: M_{} * M_{} = {} * {} = {}'.format(
Ngconv + i, Ngconv + i + 1, M_last, M[i], M_last * M[i]))
print(' biases: M_{} = {}'.format(Ngconv + i + 1, M[i]))
# Operations
self.getGraph = GetGraph()
self.getLaplacian = GetLaplacian(normalize=True)
# Store attributes and bind operations.
self.F, self.K, self.M = F, K, M
self.regularization, self.dropout = regularization, dropout
self.batch_size, self.eval_frequency = batch_size, eval_frequency
self.dir_name = dir_name
self.pool = nn.MaxPool1d(vertice)
self.relu = nn.ReLU()
self.rloss = nn.MSELoss()
for i in range(len(F)):
if i == 0:
layer = GetFilter(Fin=6, K=K[i], Fout=F[i])
else:
layer = GetFilter(Fin=F[i - 1], K=K[i], Fout=F[i])
setattr(self, 'gcn%d' % i, layer)
for i in range(len(M)):
if i == 0:
layer = nn.Linear(F[-1], M[i])
else:
layer = nn.Linear(M[i-1], M[i])
setattr(self, 'fc%d' % i, layer)
def forward(self, x, cat):
losses = []
L = self.getGraph(x)
L = self.getLaplacian(L)
# cat = torch.unsqueeze(cat,1)
# cat = torch.zeros(self.batch_size, self.class_size).scatter_(1, cat, 1)
# cat = torch.unsqueeze(cat,1)
# cat = cat.expand(-1,self.vertice,-1).double()
# x = torch.cat((x,cat),dim=2)
for i in range(len(self.F)):
x = getattr(self, 'gcn%d' % i)(x, L)
losses.append(self.rloss(x.detach(),torch.zeros_like(x)))
x = x.permute(0, 2, 1)
x = self.pool(x)
x.squeeze_(2)
for i in range(len(self.M)):
x = getattr(self, 'fc%d' % i)(x)
# x = self.relu(x)
return x,losses