forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_jit_fuser_te.py
2814 lines (2410 loc) · 105 KB
/
test_jit_fuser_te.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["NNC"]
import operator
import os
import unittest
import contextlib
import math
import torch
import torch.nn.functional as F
from torch.testing import FileCheck
from typing import List
import warnings
# these needs to be set before `common_utils`
# infers `GRAPH_EXECUTOR`.
# this file **requires** these settings
# and setting them after `GRAPH_EXECUTOR` is
# inferred erroneously runs or skips
# some tests
torch._C._jit_set_profiling_executor(True)
torch._C._get_graph_executor_optimize(True)
from torch.testing._internal.common_utils import run_tests, ProfilingMode, GRAPH_EXECUTOR, \
enable_profiling_mode_for_profiling_tests, slowTest, skipIfTorchDynamo
from torch.testing._internal.jit_utils import JitTestCase, \
RUN_CUDA, RUN_CUDA_HALF, RUN_CUDA_MULTI_GPU, warmup_backward, set_fusion_group_inlining, \
clone_inputs, get_traced_sample_variant_pairs, TensorExprTestOptions, NoTracerWarnContextManager
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_device_type import ops, onlyCPU, instantiate_device_type_tests, \
OpDTypes
from torch.testing._internal.common_jit import JitCommonTestCase
from torch.testing._internal.jit_metaprogramming_utils import create_traced_fn
from textwrap import dedent
from itertools import product, permutations, combinations
from test_jit import backward_graph, get_lstm_inputs, get_milstm_inputs, \
LSTMCellC, LSTMCellF, LSTMCellS, MiLSTMCell
from jit.test_fuser_common import TestFuserCommon # noqa: F401
FUSION_GROUP = 'prim::TensorExprGroup'
LLVM_ENABLED = torch._C._llvm_enabled()
autograd_check_set = {'aten::__is__', 'prim::AutogradAllNonZero', 'prim::AutogradAllZero', 'prim::ListConstruct'}
def strip_profiling_nodes(nodes):
profiling_opcodes = {'prim::BailoutTemplate', 'prim::BailOut'}
return [n for n in nodes if n.kind() not in profiling_opcodes]
def warmup_forward(f, *args, profiling_count=2):
for i in range(profiling_count):
results = f(*args)
return results
@contextlib.contextmanager
def texpr_reductions_enabled():
old = torch._C._jit_set_texpr_reductions_enabled(True)
try:
yield
finally:
torch._C._jit_set_texpr_reductions_enabled(old)
@contextlib.contextmanager
def texpr_enable_strategy(strategy):
old = torch._C._jit_set_fusion_strategy(strategy)
try:
yield
finally:
torch._C._jit_set_fusion_strategy(old)
@contextlib.contextmanager
def inline_fusion_groups():
old_inlining = torch._C._debug_get_fusion_group_inlining()
torch._C._debug_set_fusion_group_inlining(True)
try:
yield
finally:
torch._C._debug_set_fusion_group_inlining(old_inlining)
@skipIfTorchDynamo()
class TestTEFuser(JitTestCase):
def setUp(self):
super().setUp()
self.tensorexpr_options = TensorExprTestOptions()
# note: `self.dynamic_shapes` instatiated in specialization of class
# defined below
fusion_strategy = [("DYNAMIC", 20)] if self.dynamic_shapes else [("STATIC", 20)]
self.old_fusion_strategy = torch._C._jit_set_fusion_strategy(fusion_strategy)
self.devices = ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda']
self.int_dtypes = [
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.bool,
]
self.fp_dtypes = [
torch.float16,
torch.float32,
torch.float64,
torch.bfloat16,
]
self.dtypes = self.int_dtypes + self.fp_dtypes
def tearDown(self):
self.tensorexpr_options.restore()
torch._C._jit_set_fusion_strategy(self.old_fusion_strategy)
super().tearDown()
def assertAllFused(self, graph, except_for=None):
except_for = except_for if except_for is not None else set()
# TODO - upstream
guards = "prim::TypeCheck", "prim::RequiresGradCheck", "prim::TensorExprDynamicGuard"
guard_found = False
def autodiff_guard(node):
if node.kind() != "aten::all":
return False
inps = list(node.inputs())
if len(inps) != 1 or inps[0].node().kind() != "prim::ListConstruct":
return False
li_inps = list(inps[0].node().inputs())
for li_inp in li_inps:
if li_inp.node().kind() in ("prim::AutogradAllNonZero", "prim::AutogradAllZero"):
return True
return False
def is_guard(node):
return node.kind() in guards or autodiff_guard(node)
for node in graph.block().nodes():
if node.kind() == "prim::Constant":
continue
if is_guard(node):
self.assertFalse(guard_found)
guard_found = True
continue
if node.kind() in except_for:
continue
if node.kind() == "prim::If":
self.assertTrue(is_guard(node.prev()))
continue
self.assertTrue(False, "Found unexpected node:" + node.kind())
self.assertTrue(guard_found)
def assertLastGraphAllFused(self):
self.assertAllFused(torch.jit.last_executed_optimized_graph())
def findFusionGroups(self, graph):
result = []
for n in graph.nodes():
if n.kind() == FUSION_GROUP:
result.append(n.g('Subgraph'))
continue
for block in n.blocks():
result += self.findFusionGroups(block)
return result
def test_typecheck(self):
a = torch.ones(1)
def fused_kernel(a, b):
return (a + b) * 2.
scripted = self.checkScript(fused_kernel, (a, a))
graph = scripted.graph_for(a, a)
# double check we fused
fusion_groups = self.findFusionGroups(graph)
self.assertEqual(len(fusion_groups), 1)
# we use a bigger tensor now (size 2)
# if we won't trigger a recompilation
# we will still create a tensor up to (size 1)
# if the type check fails
a = torch.ones(2)
# shape changed if we don't trigger recompilation
# we would compute the wrong result silently
self.assertEqual(scripted(a, a), fused_kernel(a, a))
def test_sum_simple(self):
def func(x):
x2 = x * x
return x2.sum()
with texpr_reductions_enabled():
a = torch.tensor(list(range(0, 15)), dtype=torch.float, device='cpu')
a = a.reshape(5, 3)
scripted = self.checkScript(func, (a,))
self.assertLastGraphAllFused()
def test_nop(self):
pass
def test_sum_dim(self):
def func(x):
return x.sum((0, )) * 2
def func_neg(x):
return x.sum((-2, )) * 2
with texpr_reductions_enabled():
a = torch.tensor(list(range(0, 15)), dtype=torch.float, device='cpu')
a = a.reshape(5, 3)
scripted = self.checkScript(func, (a,))
self.assertLastGraphAllFused()
scripted = self.checkScript(func_neg, (a,))
self.assertLastGraphAllFused()
def test_sum_keepdim_cast(self):
def func(x):
return x.sum((0, ), keepdim=True, dtype=torch.double) * 2
with texpr_reductions_enabled():
a = torch.tensor(list(range(0, 15)), dtype=torch.float, device='cpu')
a = a.reshape(5, 3)
self.checkScript(func, (a,))
self.assertLastGraphAllFused()
def test_abs(self):
for device in self.devices:
def func(x):
return x.abs() * 2
a = torch.randn(5, device=device)
scripted = self.checkScript(func, (a,))
self.assertLastGraphAllFused()
def test_unsqueeze_size_calculation(self):
for device in self.devices:
def foo(b, d):
x = d.unsqueeze(1)
y = x * 42.
z = b + y
r = z / 42.
return r
inputs = (torch.rand(20, 28, device=device, requires_grad=True), torch.rand(20, device=device))
scripted = self.checkScript(foo, inputs)
self.assertAllFused(scripted.graph_for(*inputs))
def test_zero_element_tensors(self):
for device in self.devices:
def decode(sin_t, cos_t):
theta = torch.atan2(sin_t.float(), cos_t.float())
return theta
sin = torch.zeros(0, device=device)
cos = torch.zeros(0, device=device)
inputs = [sin, cos]
ge = self.checkScript(decode, inputs)
def test_arg_configurations_smoke(self):
if self.dynamic_shapes:
self.skipTest("TODO: chunk dynamic shapes")
# A smoke test to make sure we won't use the same kernel for contiguous
# and non-contiguous arguments.
# TODO: add optionally enabled debug counters to the fuser to verify
# that we really can tell the difference between configurations
for device in self.devices:
def f(x, y):
z1, z2 = (x + y).chunk(2, dim=1)
return z1 * z2
x = torch.randn(4, 4, dtype=torch.float, device=device)
y = torch.randn(4, 4, dtype=torch.float, device=device)
traced_f = torch.jit.trace(f, (x, y,))
self.assertEqual(traced_f(x.t().contiguous(), y), traced_f(x.t(), y))
def test_broadcast(self):
for device in self.devices:
def scaleshift(x, scale, shift):
return x * scale + shift
inputs = [
torch.randn(4, 4, dtype=torch.float, device=device),
torch.randn(4, dtype=torch.float, device=device),
torch.randn(4, dtype=torch.float, device=device),
]
self.checkScript(scaleshift, inputs)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(not RUN_CUDA_HALF, "no half support")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on")
def test_cuda_half(self):
x = torch.randn(4, 4, dtype=torch.half, device='cuda')
y = torch.randn(4, 4, dtype=torch.half, device='cuda')
funcs = [
self.fn_test_comparison_gt_lt,
self.fn_test_relu,
self.fn_test_exp
]
# Note: Non fused inputs must be float to prevent loss of precision
inputs = (x.float(), y.float())
fusion_inputs = (x, y)
for fn in funcs:
local_inputs = [t.clone().requires_grad_() for t in inputs]
local_fusion_inputs = [t.clone().requires_grad_() for t in fusion_inputs]
# Verifies outputs
fusion = torch.jit.trace(fn, local_fusion_inputs, check_trace=False)
outputs = fn(*local_inputs)
fusion_outputs = fusion(*local_fusion_inputs)
outputs_half = [t.half() for t in outputs]
self.assertEqual(outputs_half, fusion_outputs)
# Verifies gradients
for output, fusion_output in zip(outputs_half, fusion_outputs):
grads = torch.autograd.grad(
output.float().sum(), local_inputs, allow_unused=True, retain_graph=True)
fusion_grads = torch.autograd.grad(
fusion_output.sum(), local_fusion_inputs, allow_unused=True, retain_graph=True)
grads_half = [t.half() for t in grads]
self.assertEqual(grads_half, fusion_grads)
def test_checks_cat_inputs(self):
# single fusion node causes error
with set_fusion_group_inlining(True):
for device in self.devices:
# We shouldn't treat cat nodes as broadcasting. All their inputs
# need to be checked for having the same map size, before we can
# run the kernel.
def f(x, y):
return torch.cat([x + 2 * x + x ** 2, y + 4 * y + y ** 3], dim=0)
# NOTE: y is broadcastable to x, but output of f(x, y) should have
# shape 3x4, and not 4x4.
x = torch.randn(2, 4, dtype=torch.float, device=device)
y = torch.randn(1, 4, dtype=torch.float, device=device)
scripted = self.checkScript(f, (x, y))
self.assertEqual(scripted(x, y).shape, (3, 4))
self.assertAllFused(scripted.graph_for(x, y))
def test_chunk(self):
if self.dynamic_shapes:
self.skipTest("TODO: chunk dynamic shapes")
for device in self.devices:
def fn(x):
a, b, c = x.chunk(3, 1)
return a * b + c
inputs = [torch.randn(10, 6, dtype=torch.float, device=device)]
self.checkScript(fn, inputs)
self.assertLastGraphAllFused()
def test_chunk_correctness(self):
if self.dynamic_shapes:
self.skipTest("TODO: chunk dynamic shapes")
for device in self.devices:
def chunk_4_0(x):
x0, x1, x2, x3 = x.chunk(4, 0)
return x0 + x1 + x2 + x3
def chunk_4_1(x):
x0, x1, x2, x3 = x.chunk(4, 1)
return x0 + x1 + x2 + x3
def chunk_4_last(x):
x0, x1, x2, x3 = x.chunk(4, 2)
return x0 + x1 + x2 + x3
fns = [chunk_4_0, chunk_4_1, chunk_4_last]
tensors = [
# splitSize = 1
torch.randn(4, 4, 4, dtype=torch.float, device=device),
# contiguous case
torch.randn(12, 8, 16, dtype=torch.float, device=device),
# non-contiguous case
torch.randn(12, 8, 16, dtype=torch.float, device=device).transpose(1, 2),
]
for tensor in tensors:
for fn in fns:
self.checkScript(fn, [tensor])
self.assertLastGraphAllFused()
def test_chunk_distributes(self):
if self.dynamic_shapes:
self.skipTest("TODO: chunk dynamic shapes")
if self.dynamic_shapes:
self.skipTest("TODO: chunk dynamic shapes")
for device in self.devices:
def f(x, y):
z1, z2 = (x + y).chunk(2, dim=1)
return z1 * z2
x = torch.randn(4, 4, dtype=torch.float, device=device)
y = torch.randn(4, 4, dtype=torch.float, device=device)
ge = self.checkTrace(f, (x, y))
graph = ge.graph_for(x, y)
# XXX: The old fuser does broadcast_tensors but the new fuser doesn't.
# FileCheck().check("broadcast_tensors").check('with ' + FUSION_GROUP + '_') \
# .check_count('ConstantChunk', 2, exactly=True).run(str(graph))
FileCheck().check("with " + FUSION_GROUP + "_").check_count(
"ConstantChunk", 1, exactly=True
).run(str(graph))
def test_chunk_motion_deduplicates_inputs(self):
if self.dynamic_shapes:
self.skipTest("TODO: chunk dynamic shapes")
for device in self.devices:
def func1(x):
z = x * x
z0, z1 = z.chunk(2)
return z0 * z1
def func2(x):
z = x * x * x
z0, z1 = z.chunk(2)
return z0 * z1
inputs = [
torch.tensor([1.1, 1.2], device=device, dtype=torch.float),
]
for func in [func1, func2]:
self.checkScript(func, inputs)
self.assertLastGraphAllFused()
def test_chunk_multiple(self):
if self.dynamic_shapes:
self.skipTest("TODO: chunk dynamic shapes")
for device in self.devices:
# The arguments are intentionally used out of order as a test to see
# if the fusion compiler adds extra args in the correct order
def fn(s, x, y, z):
z1, z2 = z.chunk(2, 2)
x1, x2, x3 = x.chunk(3, 1)
y1, y2 = y.chunk(2, 0)
return s + x1 + x2 + x3 + y1 + y2 + z1 + z2
inputs = [
torch.randn(5, 2, 3, dtype=torch.float, device=device),
torch.randn(5, 6, 3, dtype=torch.float, device=device),
torch.randn(10, 2, 3, dtype=torch.float, device=device),
torch.randn(5, 2, 6, dtype=torch.float, device=device),
]
ge = self.checkScript(fn, inputs)
self.assertAllFused(ge.graph_for(*inputs))
def test_minmax(self):
for device in self.devices:
def tmax(a, b):
return torch.max(2 * a, b)
def tmin(a, b):
return torch.min(2 * a, b)
a = torch.randn(4, 4, dtype=torch.float)
b = torch.randn(4, 4, dtype=torch.float)
nan = torch.tensor(float('nan'), dtype=torch.float)
for f, inputs, device in product(
(tmax, tmin),
([a, b], [a, nan], [b, nan]),
self.devices):
inputs = [t.to(device) for t in inputs]
s = self.checkScript(f, inputs)
self.assertAllFused(s.graph_for(*inputs))
def test_clamp(self):
for device in self.devices:
def func2(a, b):
return torch.clamp(a + b, min=0, max=2)
def funcInf(a, b):
return torch.clamp(a + b, min=0, max=float('inf'))
def funcNegInf(a, b):
return torch.clamp(a + b, min=float('-inf'), max=0)
def funcOptMin(a, b):
return torch.clamp(a + b, max=2)
def funcOptMax(a, b):
return torch.clamp(a + b, min=0)
a = torch.randn(4, 4, dtype=torch.float, device=device, requires_grad=True)
b = torch.randn(4, 4, dtype=torch.float, device=device)
nan = torch.tensor(float('nan'), dtype=torch.float, device=device)
funcs = (func2, funcInf, funcNegInf, funcOptMin, funcOptMax)
for f, inputs in product(funcs, [[a, b], [a, nan]]):
inp1, inp2 = inputs
s = self.checkScript(f, (inp1, inp2), profiling=ProfilingMode.PROFILING)
self.assertAllFused(s.graph_for(inp1, inp2), except_for={'aten::size', 'aten::_size_if_not_equal'})
c = s(inp1, inp2)
with enable_profiling_mode_for_profiling_tests():
warmup_backward(c.sum())
graph = backward_graph(s)
self.assertAllFused(graph, except_for={'aten::Float', 'aten::_grad_sum_to_size'}.union(autograd_check_set))
def test_clamp_double(self):
for device in self.devices:
def clamp_double(x, eta: float):
return 1 - x.clamp(eta, 1 - eta)
x = torch.tensor([1.0, 1.0], dtype=torch.double, device=device)
eta = 1e-9
s = self.checkScript(clamp_double, (x, eta), profiling=ProfilingMode.PROFILING, atol=1e-10, rtol=1e-5)
self.assertAllFused(s.graph_for(x, eta), except_for={'aten::sub'})
def test_clamp_int(self):
for device in self.devices:
def clamp_int(x, eta: int):
return x.clamp(0, eta)
x = torch.tensor([1, 1], device=device)
eta = 1 << 32
s = self.checkScript(clamp_int, (x, eta), profiling=ProfilingMode.PROFILING)
self.assertAllFused(s.graph_for(x, eta))
def test_add_bool(self):
sizes = [(1,), (2,), (4, 4)]
for device, size in product(self.devices, sizes):
def f(x, y, z):
return x + y + z
x = torch.randint(0, 2, size, dtype=torch.bool, device=device)
y = torch.randint(0, 2, size, dtype=torch.bool, device=device)
z = torch.randint(0, 2, size, dtype=torch.bool, device=device)
ge = self.checkTrace(f, (x, y, z), inputs_require_grads=False)
self.assertAllFused(ge.graph_for(x, y, z))
def test_mul_bool(self):
for device in self.devices:
def f(x, y, z):
return x * y * z
x = torch.randint(0, 2, (4, 4), dtype=torch.bool, device=device)
y = torch.randint(0, 2, (4, 4), dtype=torch.bool, device=device)
z = torch.randint(0, 2, (4, 4), dtype=torch.bool, device=device)
ge = self.checkTrace(f, (x, y, z), inputs_require_grads=False)
self.assertAllFused(ge.graph_for(x, y, z))
def test_div_bool(self):
for device in self.devices:
def f(x, y, z):
return (x + y) / z
x = torch.randint(0, 2, (4, 4), dtype=torch.bool, device=device)
y = torch.randint(0, 2, (4, 4), dtype=torch.bool, device=device)
z = torch.ones_like(x, dtype=torch.bool, device=device)
ge = self.checkTrace(f, (x, y, z), inputs_require_grads=False)
self.assertAllFused(ge.graph_for(x, y, z))
def test_bitwise_ops(self):
def apply(fn):
return lambda x, y, z: fn(fn(x, y), z)
binary_ops = [
operator.__and__,
operator.__or__,
operator.__xor__,
operator.__lshift__,
operator.__rshift__,
]
devices = self.devices
for dtype, op, device in product(self.int_dtypes, binary_ops, devices):
try:
x = self.data_for(dtype, device)
y = self.data_for(dtype, device)
z = self.data_for(dtype, device)
fn = apply(op)
ref = fn(x, y, z)
except Exception:
# If eager mode doesn't support a dtype/op/device combo,
# neither does the fuser. Catch everything to avoid needing to
# guess what errors might be thrown by eager.
continue
try:
t = torch.jit.trace(fn, (x, y, z))
self.assertEqual(ref, t(x, y, z))
self.assertAllFused(t.graph_for(x, y, z))
except Exception as e:
raise RuntimeError(
" ".join(["Failed:", str(dtype), op.__name__, device])
) from e
def test_minmax_int_ops(self):
def apply(fn):
return lambda x, y, z: fn(fn(x, y), z)
binary_ops = [
torch.min,
torch.max
]
devices = self.devices
for dtype, op, device in product(self.int_dtypes, binary_ops, devices):
try:
x = self.data_for(dtype, device)
y = self.data_for(dtype, device)
z = self.data_for(dtype, device)
fn = apply(op)
ref = fn(x, y, z)
except Exception:
# If eager mode doesn't support a dtype/op/device combo,
# neither does the fuser. Catch everything to avoid needing to
# guess what errors might be thrown by eager.
continue
try:
t = torch.jit.trace(fn, (x, y, z))
self.assertEqual(ref, t(x, y, z))
self.assertAllFused(t.graph_for(x, y, z))
except Exception as e:
raise RuntimeError(
" ".join(["Failed:", str(dtype), op.__name__, device])
) from e
def test_comparison_eq_ne(self):
for device in self.devices:
def f(x, y):
mask = (x == 0).type_as(x)
z = x * mask + y
mask = (x != 0).type_as(x)
z = z * mask + y
return z
x = torch.randn(4, 4, dtype=torch.float, device=device)
y = torch.randn(4, 4, dtype=torch.float, device=device)
ge = self.checkTrace(f, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@staticmethod
def fn_test_comparison_gt_lt(x, y):
mask = (x > 0).type_as(x)
z = x * mask + y
mask = (x < 0).type_as(x)
z = z * mask + y
return z
def test_comparison_gt_lt(self):
for device in self.devices:
x = torch.randn(4, 4, dtype=torch.float, device=device)
y = torch.randn(4, 4, dtype=torch.float, device=device)
ge = self.checkTrace(self.fn_test_comparison_gt_lt, (x, y))
self.assertAllFused(ge.graph_for(x, y))
def test_comparison_ge_le(self):
for device in self.devices:
def f(x, y):
mask = (x >= 0).type_as(x)
z = x * mask + y
mask = (x <= 0).type_as(x)
z = z * mask + y
return z
x = torch.randn(4, 4, dtype=torch.float, device=device)
y = torch.randn(4, 4, dtype=torch.float, device=device)
ge = self.checkTrace(f, (x, y))
self.assertAllFused(ge.graph_for(x, y))
x.requires_grad_(True)
y.requires_grad_(True)
self.assertAllFused(ge.graph_for(x, y), except_for=("aten::size", "prim::BroadcastSizes",
"aten::_size_if_not_equal"))
def test_addcmul(self):
for device in self.devices:
t = torch.randn(1, 4, dtype=torch.float, device=device)
t1 = torch.randn(4, 1, dtype=torch.float, device=device)
t2 = torch.randn(1, 4, dtype=torch.float, device=device)
def foo(t, t1, t2):
return t.addcmul(t + 1, t2, value=0.1)
ge = self.checkTrace(foo, (t, t1, t2), allow_unused=True)
graph = ge.graph_for(t, t1, t2)
fusion_groups = self.findFusionGroups(graph)
self.assertEqual(len(fusion_groups), 1)
FileCheck().check("aten::add(").check("aten::addcmul(").run(str(fusion_groups[0]))
# TODO: We leak CUDA memory here because the traced graph holds onto a
# constant-ified tensor. Since the Python-global CompilationUnit is alive
# until the end of the process, the memory is effectively leaked.
# Removed `_cuda` suffix from this test which disables leak-checking.
# If this is a real problem, we'll need to revisit Torchscript Function
# lifetimes in Python.
def test_lerp(self):
for device in self.devices:
start = torch.randn(4, 1, dtype=torch.float, device=device)
end = torch.randn(1, 4, dtype=torch.float, device=device)
weight = torch.tensor(0.5, dtype=torch.float, device=device)
# scalar weight overload
def foo_weight_scalar(start, end):
return torch.lerp(start + 1, end, 0.5)
# tensor weight overload
def foo_weight_tensor(start, end):
return torch.lerp(start + 1, end, weight)
ge_weight_scalar = self.checkTrace(foo_weight_scalar, (start, end))
graph = ge_weight_scalar.graph_for(start, end)
self.assertAllFused(graph)
# TODO: uncomment when TE enables support for scalar tensors
# ge_weight_tensor = self.checkTrace(foo_weight_tensor, (start, end))
# graph = ge_weight_tensor.graph_for(start, end)
# self.assertAllFused(graph)
def test_concat(self):
# disabling concat causes error with single concat node
with set_fusion_group_inlining(True):
for device in self.devices:
hx = torch.randn(3, 20, dtype=torch.float, device=device)
cx = torch.randn(3, 20, dtype=torch.float, device=device)
def foo(hx, cx):
return torch.cat((hx + cx, hx * cx))
ge = self.checkTrace(foo, (hx, cx))
graph = ge.graph_for(hx, cx)
self.assertAllFused(graph)
# XXX: TE fuser can handle concats in a fusion group.
# FileCheck().check("FusedConcat").check_next("return").run(str(graph))
def test_remove_output_used_only_in_size(self):
for device in self.devices:
def test_fuse(a, b):
c = a + b
d = c + b
return d
scripted_f = torch.jit.script(test_fuse)
x = torch.ones(1, requires_grad=True, device=device)
y = torch.ones(1, requires_grad=True, device=device)
warmup_forward(scripted_f, x, y, profiling_count=3)
g = scripted_f.graph_for(x, y)
diff_nodes = g.findAllNodes('prim::DifferentiableGraph')
self.assertEqual(len(diff_nodes), 1)
g = diff_nodes[0].g('Subgraph')
if_nodes = [n for n in g.nodes() if n.kind() == 'prim::If']
self.assertEqual(len(if_nodes), 1)
# the if node and the fusion group inside it should only have one output
self.assertEqual(len(list(if_nodes[0].outputs())), 1)
def test_concat_invariant(self):
for device in self.devices:
# Invariant: the output of prim::FusedConcat may
# not be an input to any node inside the FusionGroup.
def fn(x, y, z):
x1 = x + y
y1 = x - y
w = torch.cat([x1, y1])
return w + z
x = torch.randn(2, 2, dtype=torch.float, device=device)
y = torch.randn(2, 2, dtype=torch.float, device=device)
z = torch.randn(4, 2, dtype=torch.float, device=device)
ge = self.checkTrace(fn, (x, y, z))
graph = ge.graph_for(x, y, z)
self.assertAllFused(graph, except_for={'aten::add'})
# XXX: TE fuser can handle concats inside a fusion group.
# FileCheck().check("FusedConcat").check_next("return").run(str(graph))
@staticmethod
def fn_test_exp(x, y):
return (x + .5 * y).exp()
def test_exp(self):
for device in self.devices:
x = torch.randn(4, 4, dtype=torch.float, device=device)
y = torch.randn(4, 4, dtype=torch.float, device=device)
ge = self.checkTrace(self.fn_test_exp, (x, y))
self.assertAllFused(ge.graph_for(x, y))
def test_threshold(self):
for device in self.devices:
def f(x):
return torch.threshold(x, 0, -10) + x + x + x
x = torch.tensor([-1, -0.5, 0, 1, 2, 3], device=device)
scripted = self.checkScript(f, (x,))
self.assertAllFused(scripted.graph_for(x))
def test_scalar_arg(self):
for device in self.devices:
def fn_test_scalar_arg(x: torch.Tensor, p: float) -> torch.Tensor:
return p * (x * x + x)
x = torch.randn(4, 4, dtype=torch.float, device=device)
p = 3
scripted = self.checkScript(fn_test_scalar_arg, (x, p))
self.assertAllFused(scripted.graph_for(x, p))
x.requires_grad_(True)
# use another function otherwise we will bailout
# and won't be able to do fused checks
def fn_test_scalar_arg_requires_grad(x: torch.Tensor, p: float) -> torch.Tensor:
return p * (x * x + x)
scripted = torch.jit.script(fn_test_scalar_arg_requires_grad)
out = scripted(x, p)
out = scripted(x, p)
out = scripted(x, p)
self.assertAllFused(scripted.graph_for(x, p), except_for=("aten::size", "prim::BroadcastSizes",
"aten::_size_if_not_equal"))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
def test_fusion_reuse_multi_gpu(self):
def fn(x, y):
return x * y * x * y
inputs_cpu = [
torch.randn(4, 4, dtype=torch.float),
torch.randn(4, 4, dtype=torch.float),
]
inputs_cuda0 = [x.cuda(0) for x in inputs_cpu]
inputs_cuda1 = [y.cuda(1) for y in inputs_cpu]
# Should not crash; these should compile different kernels.
ge = self.checkScript(fn, inputs_cpu)
self.assertAllFused(ge.graph_for(*inputs_cpu))
ge(*inputs_cuda0)
ge(*inputs_cuda1)
# TODO: we're currently not checking 'device' in the type info when pulling
# nodes into a fusion group. We should fix that and re-enable this test.
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
def test_kernel_cache_multi_gpu(self):
def not_fusible(x):
return x
def fn(x, y, z):
x_out = x * x * x * x * x # fusion: lambda x. x * x * x * x * x
y_out = y * y * y * y * y
z_out = z * z * z * z * z
return not_fusible(x_out), not_fusible(y_out), not_fusible(z_out)
inputs = [
torch.randn(4, 4, dtype=torch.float),
torch.randn(4, 4, dtype=torch.float, device='cuda:0'),
torch.randn(4, 4, dtype=torch.float, device='cuda:1'),
]
prev_cache_size = torch._C._jit_debug_fuser_num_cached_kernel_specs()
# There are 3 FusionGroups. Because they have the same graph, they
# should reuse the same KernelSpec in the KernelSpec cache.
ge = self.checkScript(fn, inputs)
self.assertGraphContainsExactly(
ge.graph_for(*inputs), FUSION_GROUP, 3, True)
new_cache_size = torch._C._jit_debug_fuser_num_cached_kernel_specs()
# XXX: This assumes that the same kernel isn't already used by another test
# FIXME: Use the TE fuser's way of querying the cache.
# self.assertEqual(new_cache_size - prev_cache_size, 1)
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
def test_nonzero_device_cuda(self):
device = 'cuda:' + str(1)
x = torch.tensor([0.4], dtype=torch.float, device=device)
y = torch.tensor([0.7], dtype=torch.float, device=device)
def doit(x, y):
return torch.sigmoid(torch.tanh(x * (x + y) + x))
ge = self.checkTrace(doit, (x, y))
self.assertAllFused(ge.graph_for(x, y))
def test_lstm(self):
for device in self.devices:
inputs = get_lstm_inputs(device, training=True)
module = self.checkScript(LSTMCellS, inputs)
self.assertAllFused(module.graph_for(inputs), except_for={"prim::TupleConstruct"})
def test_lstm_concat(self):
# single fusion node causes error
with set_fusion_group_inlining(True):
for device in self.devices:
inputs = get_lstm_inputs(device)
ge = self.checkTrace(LSTMCellC, inputs)
graph = ge.graph_for(*inputs)
except_nodes = {"prim::TupleConstruct", "aten::linear"}
# TODO... Chunk
if self.dynamic_shapes:
except_nodes = except_nodes.union({"aten::add", "prim::ConstantChunk"})
self.assertAllFused(ge.graph_for(*inputs), except_for=except_nodes)
# XXX: TE fuser can handle concats inside a fusion group.
# FileCheck().check("FusedConcat").check_next("return").run(str(graph))
def test_lstm_gates_permutations(self):
for device in self.devices:
# lstm has gates = x.mm(w_ih.t()) + hx.mm(w_hh.t()) + b_ih + b_hh.
# Test that any permutation of this will still result in one FusionGroup.
choices = ['x.mm(w_ih.t())', 'hx.mm(w_hh.t())', 'b_ih', 'b_hh']
template = dedent('''
def cell(x, hx, cx, w_ih, w_hh, b_ih, b_hh):
gates = {} + {} + {} + {}
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
return ingate * forgetgate * cellgate * outgate
''')
for permutation in permutations(choices, len(choices)):
code = template.format(*permutation)
scope = {}
exec(code, globals(), scope)
cu = torch.jit.CompilationUnit(code)
fusion_group_len = 2 if self.dynamic_shapes else 1
inputs = get_lstm_inputs(device, training=False)
self.assertEqual(cu.cell(*inputs), scope['cell'](*inputs))
forward_graph = cu.cell.graph_for(*inputs)
self.assertGraphContainsExactly(forward_graph, FUSION_GROUP, fusion_group_len)
# TODO: Fuser doesn't work at all when inputs require grad. Fix that
def test_lstm_traced(self):
for device in self.devices:
inputs = get_lstm_inputs(device)
ge = self.checkTrace(LSTMCellF, inputs)
graph = ge.graph_for(*inputs)
fusion_groups = self.findFusionGroups(graph)
# TODO: chunk
fusion_group_len = 2 if self.dynamic_shapes else 1
self.assertEqual(len(fusion_groups), fusion_group_len)
f = FileCheck()
if not self.dynamic_shapes:
f.check("Chunk")
f.check("aten::sigmoid").check("aten::tanh").run(str(fusion_groups[0 if not self.dynamic_shapes else 1]))
def test_milstm(self):
if self.dynamic_shapes:
self.skipTest("don't run conv with dynamic shapes")
for device in self.devices:
inputs = get_milstm_inputs(device, training=True)
module = self.checkScript(MiLSTMCell, inputs)
forward_graph = module.graph_for(*inputs)
# TODO: chunk
fusion_group_len = 2 if self.dynamic_shapes else 1
self.assertGraphContainsExactly(
forward_graph, FUSION_GROUP, fusion_group_len, consider_subgraphs=True)
FileCheck().check("DifferentiableGraph").check("TupleConstruct") \
.check_next("return").check(FUSION_GROUP).run(str(forward_graph))
hy, cy = module(*inputs)
warmup_backward((hy + cy).sum())
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skip("rand_like is not supported yet")
def test_rand_cuda(self):
class M(torch.jit.ScriptModule):
__constants__ = ['d']
def __init__(self):
super().__init__()
self.d = torch.device('cuda')
@torch.jit.script_method
def create(self, x):
return x * x + x + torch.rand_like(x)
x = torch.zeros([3, 4, 5], dtype=torch.float, device='cuda')
m = M()
out1 = m.create(x)
out2 = m.create(x)
self.assertNotEqual(out1, out2)
self.assertTrue(torch.all(out1 >= 0))
self.assertTrue(torch.all(out1 < 1))
self.assertTrue(torch.all(out2 >= 0))
self.assertTrue(torch.all(out2 < 1))
self.assertAllFused(m.create.graph_for(x))
@staticmethod
def fn_test_relu(x, y):
return F.relu(x + .5 * y)
def test_relu(self):
for device in self.devices:
x = torch.randn(4, 4, dtype=torch.float, device=device)
y = torch.randn(4, 4, dtype=torch.float, device=device)