forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathintegration.cpp
324 lines (276 loc) · 9.43 KB
/
integration.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#include <gtest/gtest.h>
#include <c10/util/irange.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
#include <cmath>
#include <cstdlib>
#include <random>
using namespace torch::nn;
using namespace torch::test;
const double kPi = 3.1415926535898;
class CartPole {
// Translated from openai/gym's cartpole.py
public:
double gravity = 9.8;
double masscart = 1.0;
double masspole = 0.1;
double total_mass = (masspole + masscart);
double length = 0.5; // actually half the pole's length;
double polemass_length = (masspole * length);
double force_mag = 10.0;
double tau = 0.02; // seconds between state updates;
// Angle at which to fail the episode
double theta_threshold_radians = 12 * 2 * kPi / 360;
double x_threshold = 2.4;
int steps_beyond_done = -1;
torch::Tensor state;
double reward;
bool done;
int step_ = 0;
torch::Tensor getState() {
return state;
}
double getReward() {
return reward;
}
double isDone() {
return done;
}
void reset() {
state = torch::empty({4}).uniform_(-0.05, 0.05);
steps_beyond_done = -1;
step_ = 0;
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
CartPole() {
reset();
}
void step(int action) {
auto x = state[0].item<float>();
auto x_dot = state[1].item<float>();
auto theta = state[2].item<float>();
auto theta_dot = state[3].item<float>();
auto force = (action == 1) ? force_mag : -force_mag;
auto costheta = std::cos(theta);
auto sintheta = std::sin(theta);
auto temp = (force + polemass_length * theta_dot * theta_dot * sintheta) /
total_mass;
auto thetaacc = (gravity * sintheta - costheta * temp) /
(length * (4.0 / 3.0 - masspole * costheta * costheta / total_mass));
auto xacc = temp - polemass_length * thetaacc * costheta / total_mass;
x = x + tau * x_dot;
x_dot = x_dot + tau * xacc;
theta = theta + tau * theta_dot;
theta_dot = theta_dot + tau * thetaacc;
state = torch::tensor({x, x_dot, theta, theta_dot});
done = x < -x_threshold || x > x_threshold ||
theta < -theta_threshold_radians || theta > theta_threshold_radians ||
step_ > 200;
if (!done) {
reward = 1.0;
} else if (steps_beyond_done == -1) {
// Pole just fell!
steps_beyond_done = 0;
reward = 0;
} else {
if (steps_beyond_done == 0) {
AT_ASSERT(false); // Can't do this
}
}
step_++;
}
};
template <typename M, typename F, typename O>
bool test_mnist(
size_t batch_size,
size_t number_of_epochs,
bool with_cuda,
M&& model,
F&& forward_op,
O&& optimizer) {
std::string mnist_path = "mnist";
if (const char* user_mnist_path = getenv("TORCH_CPP_TEST_MNIST_PATH")) {
mnist_path = user_mnist_path;
}
auto train_dataset =
torch::data::datasets::MNIST(
mnist_path, torch::data::datasets::MNIST::Mode::kTrain)
.map(torch::data::transforms::Stack<>());
auto data_loader =
torch::data::make_data_loader(std::move(train_dataset), batch_size);
torch::Device device(with_cuda ? torch::kCUDA : torch::kCPU);
model->to(device);
for (const auto epoch : c10::irange(number_of_epochs)) {
(void)epoch; // Suppress unused variable warning
// NOLINTNEXTLINE(performance-for-range-copy)
for (torch::data::Example<> batch : *data_loader) {
auto data = batch.data.to(device);
auto targets = batch.target.to(device);
torch::Tensor prediction = forward_op(std::move(data));
// NOLINTNEXTLINE(performance-move-const-arg)
torch::Tensor loss = torch::nll_loss(prediction, std::move(targets));
AT_ASSERT(!torch::isnan(loss).any().item<int64_t>());
optimizer.zero_grad();
loss.backward();
optimizer.step();
}
}
torch::NoGradGuard guard;
torch::data::datasets::MNIST test_dataset(
mnist_path, torch::data::datasets::MNIST::Mode::kTest);
auto images = test_dataset.images().to(device),
targets = test_dataset.targets().to(device);
auto result = std::get<1>(forward_op(images).max(/*dim=*/1));
torch::Tensor correct = (result == targets).to(torch::kFloat32);
return correct.sum().item<float>() > (test_dataset.size().value() * 0.8);
}
struct IntegrationTest : torch::test::SeedingFixture {};
TEST_F(IntegrationTest, CartPole) {
torch::manual_seed(0);
auto model = std::make_shared<SimpleContainer>();
auto linear = model->add(Linear(4, 128), "linear");
auto policyHead = model->add(Linear(128, 2), "policy");
auto valueHead = model->add(Linear(128, 1), "action");
auto optimizer = torch::optim::Adam(model->parameters(), 1e-3);
std::vector<torch::Tensor> saved_log_probs;
std::vector<torch::Tensor> saved_values;
std::vector<float> rewards;
auto forward = [&](torch::Tensor inp) {
auto x = linear->forward(inp).clamp_min(0);
torch::Tensor actions = policyHead->forward(x);
torch::Tensor value = valueHead->forward(x);
return std::make_tuple(torch::softmax(actions, -1), value);
};
auto selectAction = [&](torch::Tensor state) {
// Only work on single state right now, change index to gather for batch
auto out = forward(state);
auto probs = torch::Tensor(std::get<0>(out));
auto value = torch::Tensor(std::get<1>(out));
auto action = probs.multinomial(1)[0].item<int32_t>();
// Compute the log prob of a multinomial distribution.
// This should probably be actually implemented in autogradpp...
auto p = probs / probs.sum(-1, true);
auto log_prob = p[action].log();
saved_log_probs.emplace_back(log_prob);
saved_values.push_back(value);
return action;
};
auto finishEpisode = [&] {
auto R = 0.;
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
for (int i = rewards.size() - 1; i >= 0; i--) {
R = rewards[i] + 0.99 * R;
rewards[i] = R;
}
auto r_t = torch::from_blob(
rewards.data(), {static_cast<int64_t>(rewards.size())});
r_t = (r_t - r_t.mean()) / (r_t.std() + 1e-5);
std::vector<torch::Tensor> policy_loss;
std::vector<torch::Tensor> value_loss;
for (const auto i : c10::irange(0U, saved_log_probs.size())) {
auto advantage = r_t[i] - saved_values[i].item<float>();
policy_loss.push_back(-advantage * saved_log_probs[i]);
value_loss.push_back(
torch::smooth_l1_loss(saved_values[i], torch::ones(1) * r_t[i]));
}
auto loss =
torch::stack(policy_loss).sum() + torch::stack(value_loss).sum();
optimizer.zero_grad();
loss.backward();
optimizer.step();
rewards.clear();
saved_log_probs.clear();
saved_values.clear();
};
auto env = CartPole();
double running_reward = 10.0;
for (size_t episode = 0;; episode++) {
env.reset();
auto state = env.getState();
int t = 0;
for (; t < 10000; t++) {
auto action = selectAction(state);
env.step(action);
state = env.getState();
auto reward = env.getReward();
auto done = env.isDone();
rewards.push_back(reward);
if (done)
break;
}
running_reward = running_reward * 0.99 + t * 0.01;
finishEpisode();
/*
if (episode % 10 == 0) {
printf("Episode %i\tLast length: %5d\tAverage length: %.2f\n",
episode, t, running_reward);
}
*/
if (running_reward > 150) {
break;
}
ASSERT_LT(episode, 3000);
}
}
TEST_F(IntegrationTest, MNIST_CUDA) {
torch::manual_seed(0);
auto model = std::make_shared<SimpleContainer>();
auto conv1 = model->add(Conv2d(1, 10, 5), "conv1");
auto conv2 = model->add(Conv2d(10, 20, 5), "conv2");
auto drop = Dropout(0.3);
auto drop2d = Dropout2d(0.3);
auto linear1 = model->add(Linear(320, 50), "linear1");
auto linear2 = model->add(Linear(50, 10), "linear2");
auto forward = [&](torch::Tensor x) {
x = torch::max_pool2d(conv1->forward(x), {2, 2}).relu();
x = conv2->forward(x);
x = drop2d->forward(x);
x = torch::max_pool2d(x, {2, 2}).relu();
x = x.view({-1, 320});
x = linear1->forward(x).clamp_min(0);
x = drop->forward(x);
x = linear2->forward(x);
x = torch::log_softmax(x, 1);
return x;
};
auto optimizer = torch::optim::SGD(
model->parameters(), torch::optim::SGDOptions(1e-2).momentum(0.5));
ASSERT_TRUE(test_mnist(
32, // batch_size
3, // number_of_epochs
true, // with_cuda
model,
forward,
optimizer));
}
TEST_F(IntegrationTest, MNISTBatchNorm_CUDA) {
torch::manual_seed(0);
auto model = std::make_shared<SimpleContainer>();
auto conv1 = model->add(Conv2d(1, 10, 5), "conv1");
auto batchnorm2d = model->add(BatchNorm2d(10), "batchnorm2d");
auto conv2 = model->add(Conv2d(10, 20, 5), "conv2");
auto linear1 = model->add(Linear(320, 50), "linear1");
auto batchnorm1 = model->add(BatchNorm1d(50), "batchnorm1");
auto linear2 = model->add(Linear(50, 10), "linear2");
auto forward = [&](torch::Tensor x) {
x = torch::max_pool2d(conv1->forward(x), {2, 2}).relu();
x = batchnorm2d->forward(x);
x = conv2->forward(x);
x = torch::max_pool2d(x, {2, 2}).relu();
x = x.view({-1, 320});
x = linear1->forward(x).clamp_min(0);
x = batchnorm1->forward(x);
x = linear2->forward(x);
x = torch::log_softmax(x, 1);
return x;
};
auto optimizer = torch::optim::SGD(
model->parameters(), torch::optim::SGDOptions(1e-2).momentum(0.5));
ASSERT_TRUE(test_mnist(
32, // batch_size
3, // number_of_epochs
true, // with_cuda
model,
forward,
optimizer));
}