-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathutils.py
846 lines (752 loc) · 41.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# __author__ = "Sponge_sy"
# Date: 2021/6/30
import csv
import json
import random
class Datasets():
def __init__(self, dataset_name=""):
self.dataset_name = dataset_name
self.patterns = []
self.train_path, self.dev_path, self.test_path = "", "", ""
if (dataset_name == 'eprstmt'):
self.train_path = r"./datasets/few_clue/eprstmt/train_few_all.json"
self.dev_path = r"./datasets/few_clue/eprstmt/dev_few_all.json"
self.test_path = r"./datasets/few_clue/eprstmt/test_public.json"
self.metric = 'Acc'
self.label_texts = ["Positive", "Negative"]
self.text2id = {"Positive": 0, "Negative": 1}
self.patterns = [['好评', '差评'], ['东西不错', '东西很差'], ['这次买的东西很好', '这次买的东西很差']]
elif (dataset_name == "tnews"):
self.train_path = r"./datasets/few_clue/tnews_new/train_few_all.json"
self.dev_path = r"./datasets/few_clue/tnews_new/dev_few_all.json"
self.test_path = r"./datasets/few_clue/tnews_new/test_public.json"
self.metric = 'Acc'
self.label_texts = ["文化", "娱乐", "体育", "财经", "房产", "汽车", "教育", "科技", "军事", "旅游", "国际",
"证券", "农业", "电竞", "民生"]
self.templates = ["[label]", "[label]新闻", "这是一则[label]新闻"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == "csldcp"):
self.train_path = r"./datasets/few_clue/csldcp/train_few_all.json"
self.dev_path = r"./datasets/few_clue/csldcp/dev_few_all.json"
self.test_path = r"./datasets/few_clue/csldcp/test_public.json"
self.label_path = r"./datasets/few_clue/csldcp/labels_all.txt"
self.metric = 'Acc'
self.label_texts, self.text2id = read_labels(self.label_path)
self.templates = ["[label]", "[label]类论文", "这是一篇[label]类论文"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == 'iflytek'):
self.train_path = r"./datasets/few_clue/iflytek/train_few_all.json"
self.dev_path = r"./datasets/few_clue/iflytek/dev_few_all.json"
self.test_path = r"./datasets/few_clue/iflytek/test_public.json"
self.metric = 'Acc'
self.label_text2label_id = { # 中文标签对应的ID
"打车": 0, "美颜": 100, "影像剪辑": 101, "摄影修图": 102,
"相机": 103, "绘画": 104, "二手": 105, "电商": 106,
"团购": 107, "外卖": 108, "电影票务": 109, "社区服务": 10,
"社区超市": 110, "购物咨询": 111, "笔记": 112, "办公": 113,
"日程管理": 114, "女性": 115, "经营": 116, "收款": 117,
"其他": 118, "薅羊毛": 11, "魔幻": 12, "仙侠": 13,
"卡牌": 14, "飞行空战": 15, "射击游戏": 16, "休闲益智": 17,
"动作类": 18, "体育竞技": 19, "地图导航": 1, "棋牌中心": 20,
"经营养成": 21, "策略": 22, "MOBA": 23, "辅助工具": 24,
"约会社交": 25, "即时通讯": 26, "工作社交": 27, "论坛圈子": 28,
"婚恋社交": 29, "免费WIFI": 2, "情侣社交": 30, "社交工具": 31,
"生活社交": 32, "微博博客": 33, "新闻": 34, "漫画": 35,
"小说": 36, "技术": 37, "教辅": 38, "问答交流": 39,
"租车": 3, "搞笑": 40, "杂志": 41, "百科": 42,
"影视娱乐": 43, "求职": 44, "兼职": 45, "视频": 46,
"短视频": 47, "音乐": 48, "直播": 49, "同城服务": 4,
"电台": 50, "K歌": 51, "成人": 52, "中小学": 53,
"职考": 54, "公务员": 55, "英语": 56, "视频教育": 57,
"高等教育": 58, "成人教育": 59, "快递物流": 5, "艺术": 60,
"语言(非英语)": 61, "旅游资讯": 62, "综合预定": 63, "民航": 64,
"铁路": 65, "酒店": 66, "行程管理": 67,
"民宿短租": 68, "出国": 69, "婚庆": 6, "工具": 70,
"亲子儿童": 71, "母婴": 72, "驾校": 73, "违章": 74,
"汽车咨询": 75, "汽车交易": 76, "日常养车": 77, "行车辅助": 78,
"租房": 79, "家政": 7, "买房": 80, "装修家居": 81,
"电子产品": 82, "问诊挂号": 83, "养生保健": 84, "医疗服务": 85,
"减肥瘦身": 86, "美妆美业": 87, "菜谱": 88, "餐饮店": 89,
"公共交通": 8, "体育咨讯": 90, "运动健身": 91, "支付": 92,
"保险": 93, "股票": 94, "借贷": 95, "理财": 96,
"彩票": 97, "记账": 98, "银行": 99, "政务": 9,
}
self.label_texts = ['打车', '地图导航', '免费WIFI', '租车', '同城服务', '快递物流', '婚庆', '家政', '公共交通', '政务', '社区服务', '薅羊毛',
'魔幻', '仙侠', '卡牌', '飞行空战', '射击游戏', '休闲益智', '动作类', '体育竞技', '棋牌中心', '经营养成', '策略', 'MOBA',
'辅助工具', '约会社交', '即时通讯', '工作社交', '论坛圈子', '婚恋社交', '情侣社交', '社交工具', '生活社交', '微博博客', '新闻',
'漫画', '小说', '技术', '教辅', '问答交流', '搞笑', '杂志', '百科', '影视娱乐', '求职', '兼职', '视频', '短视频', '音乐',
'直播', '电台', 'K歌', '成人', '中小学', '职考', '公务员', '英语', '视频教育', '高等教育', '成人教育', '艺术',
'语言(非英语)', '旅游资讯', '综合预定', '民航', '铁路', '酒店', '行程管理', '民宿短租', '出国', '工具', '亲子儿童', '母婴',
'驾校', '违章', '汽车咨询', '汽车交易', '日常养车', '行车辅助', '租房', '买房', '装修家居', '电子产品', '问诊挂号', '养生保健',
'医疗服务', '减肥瘦身', '美妆美业', '菜谱', '餐饮店', '体育咨讯', '运动健身', '支付', '保险', '股票', '借贷', '理财', '彩票',
'记账', '银行', '美颜', '影像剪辑', '摄影修图', '相机', '绘画', '二手', '电商', '团购', '外卖', '电影票务', '社区超市',
'购物咨询', '笔记', '办公', '日程管理', '女性', '经营', '收款', '其他']
self.templates = ["[label]", "[label]类软件", "这是一款[label]类软件"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == "ocnli"):
self.train_path = r"./datasets/few_clue/ocnli/train_few_all.json"
self.dev_path = r"./datasets/few_clue/ocnli/dev_few_all.json"
self.test_path = r"./datasets/few_clue/ocnli/test_public.json"
self.metric = 'Acc'
self.labels = [0, 1, 2]
self.label_texts = ["entailment", "contradiction", "neutral"]
self.label_text2label_id = {"entailment": 2, "contradiction": 0, "neutral": 1}
elif (dataset_name == "bustm"):
self.train_path = r"./datasets/few_clue/bustm/train_few_all.json"
self.dev_path = r"./datasets/few_clue/bustm/dev_few_all.json"
self.test_path = r"./datasets/few_clue/bustm/test_public.json"
self.metric = 'Acc'
self.labels = [0, 1]
elif (dataset_name == "chid"):
self.train_path = r"./datasets/few_clue/chid/train_few_all.json"
self.dev_path = r"./datasets/few_clue/chid/dev_few_all.json"
self.test_path = r"./datasets/few_clue/chid/test_public.json"
self.metric = 'Acc'
elif (dataset_name == "csl"):
self.train_path = r"./datasets/few_clue/csl/train_few_all.json"
self.dev_path = r"./datasets/few_clue/csl/dev_few_all.json"
self.test_path = r"./datasets/few_clue/csl/test_public.json"
self.metric = 'Acc'
self.labels = [0, 1]
elif (dataset_name == "cluewsc"):
self.train_path = r"./datasets/few_clue/cluewsc/train_few_all.json"
self.dev_path = r"./datasets/few_clue/cluewsc/dev_few_all.json"
self.test_path = r"./datasets/few_clue/cluewsc/test_public.json"
self.metric = 'Acc'
self.labels = [0, 1]
self.text2id = {"true": 1, "false": 0}
self.patterns = ['其中', '上文中']
elif (dataset_name == "duel2.0"):
self.train_path = r"./datasets/DuEL 2.0/train.json"
self.dev_path = r"./datasets/DuEL 2.0/dev.json"
self.test_path = r"./datasets/DuEL 2.0/test.json"
self.kb_path = r"./datasets/DuEL 2.0/kb.json"
self.metric = 'Acc'
self.type_en2zh = {'Event': '事件活动', 'Person': '人物', 'Work': '作品', 'Location': '区域场所',
'Time&Calendar': '时间历法', 'Brand': '品牌', 'Natural&Geography': '自然地理',
'Game': '游戏', 'Biological': '生物', 'Medicine': '药物', 'Food': '食物',
'Software': '软件', 'Vehicle': '车辆', 'Website': '网站平台', 'Disease&Symptom': '疾病症状',
'Organization': '组织机构', 'Awards': '奖项', 'Education': '教育', 'Culture': '文化',
'Constellation': '星座', 'Law&Regulation': '法律法规', 'VirtualThings': '虚拟事物',
'Diagnosis&Treatment': '诊断治疗方法', 'Other': '其他'}
self.type_list = ['Event', 'Person', 'Work', 'Location', 'Time&Calendar', 'Brand', 'Natural&Geography',
'Game', 'Biological', 'Medicine', 'Food', 'Software', 'Vehicle', 'Website',
'Disease&Symptom',
'Organization', 'Awards', 'Education', 'Culture', 'Constellation', 'Law&Regulation',
'VirtualThings',
'Diagnosis&Treatment', 'Other']
elif (dataset_name == "AGNews"):
self.train_path = r"./datasets/enEval/agnews/train.csv"
self.dev_path = r"./datasets//enEval/agnews/test.csv"
self.test_path = r"./datasets//enEval/agnews/test.csv"
self.metric = 'Acc'
self.label_texts = ["political", "sports", "business", "technology"]
self.templates = ["[label]", "This is a [label] news", "The above news is about [label]"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == "DBPedia"):
self.train_path = r"./datasets/enEval/dbpedia/train.txt"
self.dev_path = r"./datasets//enEval/dbpedia/test.txt"
self.test_path = r"./datasets//enEval/dbpedia/test.txt"
self.metric = 'Acc'
self.label_texts = ["company", "school university", "artist", "athlete", "politics", "transportation",
"building",
"river mountain lake", "village", "animal", "plant tree", "album", "film",
"book publication"]
self.templates = ["[label]", "This is about [label]", "It's a [label]"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == "IMDB"):
self.train_path = r"./datasets/enEval/imdb/train.txt"
self.dev_path = r"./datasets/enEval/imdb/test.txt"
self.test_path = r"./datasets/enEval/imdb/test.txt"
self.metric = 'Acc'
self.label_texts = ['bad', 'good']
self.templates = ["It is [label]", "This movie is [label]",
"After watching this movie, I think it's [label]"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == "Amazon"):
self.train_path = r"./datasets/enEval/amazon/train.txt"
self.dev_path = r"./datasets/enEval/amazon/test.txt"
self.test_path = r"./datasets/enEval/amazon/test.txt"
self.metric = 'Acc'
self.label_texts = ['bad', 'good']
self.templates = ["It is [label]", "All in all, it is [label]",
"I think it is [label]"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == 'SST-2'):
self.train_path = r"./datasets/GLUE/SST-2/train.tsv"
self.dev_path = r"./datasets/GLUE/SST-2/train.tsv"
self.test_path = r"./datasets/GLUE/SST-2/dev.tsv"
self.metric = 'Acc'
self.label_texts = ["terrible", "great"]
self.templates = ["[label]", "It was [label]", "That is [label]"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == 'CoLA'):
self.train_path = r"./datasets/GLUE/CoLA/train.tsv"
self.dev_path = r"./datasets/GLUE/CoLA/train.tsv"
self.test_path = r"./datasets/GLUE/CoLA/dev.tsv"
self.metric = 'Matthews'
self.label_texts = ["wrong", "correct"]
self.templates = ["[label]", "That's [label]", "The grammar of this sentence is [label]"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == 'MR'):
self.train_path = r"./datasets/others/MR/train.csv"
self.dev_path = r"./datasets/others/MR/train.csv"
self.test_path = r"./datasets/others/MR/test.csv"
self.metric = 'Acc'
self.label_texts = ["terrible", "great"]
self.templates = ["It was [label]", "It's' [label]", "A [label] piece of work"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == 'CR'):
self.train_path = r"./datasets/others/CR/train.csv"
self.dev_path = r"./datasets/others/CR/train.csv"
self.test_path = r"./datasets/others/CR/test.csv"
self.metric = 'Acc'
self.label_texts = ["terrible", "great"]
self.templates = ["It was [label]", "It's' [label]", "A [label] piece of work"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == 'MPQA'):
self.train_path = r"./datasets/others/MPQA/train.csv"
self.dev_path = r"./datasets/others/MPQA/train.csv"
self.test_path = r"./datasets/others/MPQA/test.csv"
self.metric = 'Acc'
self.label_texts = ["terrible", "great"]
self.templates = ["It's [label]", "It's' [label]", "A [label] piece of work"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == 'Subj'):
self.train_path = r"./datasets/others/Subj/train.csv"
self.dev_path = r"./datasets/others/Subj/train.csv"
self.test_path = r"./datasets/others/Subj/test.csv"
self.metric = 'Acc'
self.label_texts = ["exciting", "normal"]
self.templates = ["It's [label]", "A [label] piece of work"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == 'TREC'):
self.train_path = r"./datasets/others/TREC/train.csv"
self.dev_path = r"./datasets/others/TREC/train.csv"
self.test_path = r"./datasets/others/TREC/test.csv"
self.metric = 'Acc'
self.label_texts = ["definition", "entity", "abbreviations", "people", "place", "number"]
# self.label_texts = ["close", "important"]
self.templates = ["It's about [label]", "The answer is about a [label]"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == 'SST-5'):
self.train_path = r"./datasets/others/SST-5/train.tsv"
self.dev_path = r"./datasets/others/SST-5/dev.tsv"
self.test_path = r"./datasets/others/SST-5/test.tsv"
self.metric = 'Acc'
self.label_texts = ["terrible", "bad", "okay", "good", "great"]
self.templates = ["[label]", "It is [label]", "That is [label]"]
self.patterns = [[template.replace('[label]', label) for label in self.label_texts] for template in
self.templates]
elif (dataset_name == "QQP"):
self.train_path = r"./datasets/GLUE/QQP/train.tsv"
self.dev_path = r"./datasets/GLUE/QQP/train.tsv"
self.test_path = r"./datasets/GLUE/QQP/dev.tsv"
self.labels = [0, 1]
self.metric = 'F1'
elif (dataset_name == "MRPC"):
self.train_path = r"./datasets/GLUE/MRPC/msr_paraphrase_train.txt"
self.dev_path = r"./datasets/GLUE/MRPC/msr_paraphrase_train.txt"
self.test_path = r"./datasets/GLUE/MRPC/msr_paraphrase_test.txt"
self.labels = [0, 1]
self.metric = 'F1'
elif (dataset_name == "QNLI"):
self.train_path = r"./datasets/GLUE/QNLI/train.tsv"
self.dev_path = r"./datasets/GLUE/QNLI/train.tsv"
self.test_path = r"./datasets/GLUE/QNLI/dev.tsv"
self.metric = 'Acc'
self.text2id = {"entailment": 1, "not_entailment": 0}
self.labels = [0, 1]
elif (dataset_name == "WNLI"):
self.train_path = r"./datasets/GLUE/WNLI/train.tsv"
self.dev_path = r"./datasets/GLUE/WNLI/train.tsv"
self.test_path = r"./datasets/GLUE/WNLI/dev.tsv"
self.metric = 'Acc'
self.labels = [0, 1]
elif (dataset_name == "MNLI-mm"):
self.train_path = r"./datasets/GLUE/MNLI/train.tsv"
self.dev_path = r"./datasets/GLUE/MNLI/dev_matched.tsv"
self.test_path = r"./datasets/GLUE/MNLI/dev_matched.tsv"
self.metric = 'Acc'
self.text2id = {"contradiction": 0, "neutral": 1, "entailment": 2}
self.labels = [0, 1, 2]
elif (dataset_name == "MNLI"):
self.train_path = r"./datasets/GLUE/MNLI/train.tsv"
self.dev_path = r"./datasets/GLUE/MNLI/dev_mismatched.tsv"
self.test_path = r"./datasets/GLUE/MNLI/dev_mismatched.tsv"
self.metric = 'Acc'
self.text2id = {"contradiction": 0, "neutral": 1, "entailment": 2}
self.labels = [0, 1, 2]
elif (dataset_name == "SNLI"):
self.train_path = r"./datasets/others/SNLI/train.tsv"
self.dev_path = r"./datasets/others/SNLI/dev.tsv"
self.test_path = r"./datasets/others/SNLI/test.tsv"
self.metric = 'Acc'
self.text2id = {"contradiction": 0, "neutral": 1, "entailment": 2}
self.labels = [0, 1, 2]
elif (dataset_name == "RTE"):
self.train_path = r"./datasets/GLUE/RTE/train.tsv"
self.dev_path = r"./datasets/GLUE/RTE/train.tsv"
self.test_path = r"./datasets/GLUE/RTE/dev.tsv"
self.metric = 'Acc'
self.text2id = {"entailment": 1, "not_entailment": 0}
self.labels = [0, 1]
elif (dataset_name == "STS-B"):
self.train_path = r"./datasets/GLUE/STS-B/train.tsv"
self.dev_path = r"./datasets/GLUE/STS-B/train.tsv"
self.test_path = r"./datasets/GLUE/STS-B/dev.tsv"
self.metric = 'Pear'
self.labels = [0, 1, 2, 3, 4, 5]
def load_data(self, filename, sample_num=-1, is_train=False, is_shuffle=False):
D = []
if (self.dataset_name == "eprstmt"):
text2id = self.text2id
with open(filename, encoding='utf-8') as f:
for l in f:
content = json.loads(l)['sentence']
label_text = json.loads(l)['label']
label_id = text2id[label_text]
D.append((content, int(label_id)))
elif (self.dataset_name == "tnews"):
with open(filename, encoding='utf-8') as f:
for l in f:
text = json.loads(l)['text']
label = json.loads(l)['label']
D.append((text, int(label)))
elif (self.dataset_name == "csldcp"):
text2id = self.text2id
with open(filename, encoding='utf-8') as f:
for l in f:
content = json.loads(l)['content']
label_text = json.loads(l)['label']
label_id = text2id[label_text]
D.append((content, int(label_id)))
elif (self.dataset_name == "iflytek"):
with open(filename, encoding='utf-8') as f:
for l in f:
text = json.loads(l)['sentence']
label = json.loads(l)['label']
D.append((text, int(label)))
elif (self.dataset_name == "ocnli"):
with open(filename, encoding='utf-8') as f:
for l in f:
sentence1 = json.loads(l)['sentence1']
sentence2 = json.loads(l)['sentence2']
label_text = json.loads(l)['label']
label = int(self.label_text2label_id[label_text])
text = "{}[SEP]{}".format(sentence1, sentence2)
D.append((text, int(label)))
elif (self.dataset_name == "bustm"):
with open(filename, encoding='utf-8') as f:
for l in f:
sentence1 = json.loads(l)['sentence1']
sentence2 = json.loads(l)['sentence2']
label = json.loads(l)['label']
text = "{}[SEP]{}".format(sentence1, sentence2)
D.append((text, int(label)))
elif (self.dataset_name == "chid"):
with open(filename, encoding='utf-8') as f:
for l in f:
content = json.loads(l)['content']
candidates = json.loads(l)['candidates']
label = json.loads(l)['answer']
D.append((content, int(label), candidates))
elif (self.dataset_name == "csl"):
with open(filename, encoding='utf-8') as f:
for l in f:
content = json.loads(l)['abst']
keywords = json.loads(l)['keyword']
label = json.loads(l)['label']
D.append((content + "[SEP]" + ",".join(keywords), int(label)))
elif (self.dataset_name == "cluewsc"):
with open(filename, encoding='utf-8') as f:
for l in f:
target = json.loads(l)['target']
span1_text = target['span1_text']
span2_text = target['span2_text']
span1_index = target['span1_index']
span2_index = target['span2_index']
text = json.loads(l)['text']
label = json.loads(l)['label']
label = self.text2id[label]
D.append((text, int(label), span1_text, span2_text, span1_index, span2_index))
elif (self.dataset_name == "AGNews"):
with open(filename, encoding='utf-8') as f:
reader = csv.reader(f, delimiter=',')
for idx, row in enumerate(reader):
label, headline, body = row
text_a = headline.replace('\\', ' ')
text_b = body.replace('\\', ' ')
D.append((text_a + ". " + text_b, int(label) - 1))
# D.append((text_b, int(label) - 1))
elif (self.dataset_name == "DBPedia"):
label_filename = ""
if ('test' in filename):
label_filename = filename.replace('test', 'test_labels')
if ('train' in filename):
label_filename = filename.replace('train', 'train_labels')
lines = []
entities = []
with open(filename, encoding='utf-8') as f:
for line in f.readlines():
lines.append(line)
entity = line.split('.')[0]
entities.append(entity)
labels = []
with open(label_filename, encoding='utf-8') as label_f:
for label in label_f.readlines():
labels.append(label)
for line, entity, label in zip(lines, entities, labels):
text = "{} The {} is a".format(line, entity)
D.append((text, int(label)))
print("We recommend using template0 with the suffix.")
elif (self.dataset_name == "IMDB"):
label_filename = ""
if ('test' in filename):
label_filename = filename.replace('test', 'test_labels')
if ('train' in filename):
label_filename = filename.replace('train', 'train_labels')
lines = []
with open(filename, encoding='utf-8') as f:
for line in f.readlines():
lines.append(line)
labels = []
with open(label_filename, encoding='utf-8') as label_f:
for label in label_f.readlines():
labels.append(label)
for line, label in zip(lines, labels):
D.append((line, int(label)))
elif (self.dataset_name == "Amazon"):
label_filename = ""
if ('test' in filename):
label_filename = filename.replace('test', 'test_labels')
if ('train' in filename):
label_filename = filename.replace('train', 'train_labels')
lines = []
with open(filename, encoding='utf-8') as f:
for line in f.readlines():
lines.append(line)
labels = []
with open(label_filename, encoding='utf-8') as label_f:
for label in label_f.readlines():
labels.append(label)
for line, label in zip(lines, labels):
D.append((line, int(label)))
elif (self.dataset_name == "duel2.0"):
with open(filename, encoding='utf-8')as f:
for l in f:
D.append(json.loads(l))
elif (self.dataset_name == "QQP"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
if (i == 0):
continue
rows = l.strip().split('\t')
text_a = rows[-3]
text_b = rows[-2]
label = rows[-1]
text_a = text_a + " which means "
D.append((text_a + "[SEP]" + text_b, int(label)))
elif (self.dataset_name == "MRPC"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
if (i == 0):
continue
rows = l.strip().split('\t')
text_a = rows[-1]
text_b = rows[-2]
label = rows[0]
text_a = text_a + " which means "
D.append((text_a + "[SEP]" + text_b, int(label)))
elif (self.dataset_name == "QNLI"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
if (i == 0):
continue
rows = l.strip().split('\t')
text_a = rows[-3]
text_b = rows[-2]
label = rows[-1]
text_a = text_a + " which means "
D.append((text_a + "[SEP]" + text_b, self.text2id[label]))
elif (self.dataset_name == "WNLI"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
if (i == 0):
continue
rows = l.strip().split('\t')
text_a = rows[-3]
text_b = rows[-2]
label = rows[-1]
D.append((text_a + "[SEP]" + text_b, int(label)))
elif (self.dataset_name == "MNLI"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
if (i == 0):
continue
rows = l.strip().split('\t')
text_a = rows[-8]
text_b = rows[-7]
label = rows[-1]
text_a = text_a + " which means "
D.append((text_a + "[SEP]" + text_b, self.text2id[label]))
elif (self.dataset_name == "MNLI-mm"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
if (i == 0):
continue
rows = l.strip().split('\t')
text_a = rows[-8]
text_b = rows[-7]
label = rows[-1]
text_a = text_a + " which means "
D.append((text_a + "[SEP]" + text_b, self.text2id[label]))
elif (self.dataset_name == "SNLI"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
if (i == 0):
continue
rows = l.strip().split('\t')
text_a = rows[-8]
text_b = rows[-7]
label = rows[-1]
text_a = text_a + " which means "
D.append((text_a + "[SEP]" + text_b, self.text2id[label]))
elif (self.dataset_name == "RTE"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
if (i == 0):
continue
rows = l.strip().split('\t')
text_a = rows[-3]
text_b = rows[-2]
label = rows[-1]
D.append((text_a + "[SEP]" + text_b, self.text2id[label]))
elif (self.dataset_name == "CoLA"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
if (i == 0):
continue
rows = l.strip().split('\t')
text = rows[-1]
label = rows[-3]
D.append((text, int(label)))
elif (self.dataset_name == "STS-B"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
if (i == 0):
continue
rows = l.strip().split('\t')
text_a = rows[-3]
text_b = rows[-2]
score = rows[-1]
text_a = text_a + " which means "
D.append((text_a + "[SEP]" + text_b, float(score)))
elif (self.dataset_name == "SST-2"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
if (i == 0):
continue
rows = l.strip().split('\t')
text = rows[-2]
label = rows[-1]
D.append((text, int(label)))
elif (self.dataset_name == "SST-5"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
text = l[2:]
label = l[0]
D.append((text, int(label)))
elif (self.dataset_name == "MR"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
text = l[2:]
text = text.lstrip('"').rstrip('"')
label = l[0]
D.append((text, int(label)))
elif (self.dataset_name == "CR"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
text = l[2:]
text = text.lstrip('"').rstrip('"')
label = l[0]
D.append((text, int(label)))
elif (self.dataset_name == "MPQA"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
text = l[2:]
text = text.lstrip('"').rstrip('"')
label = l[0]
D.append((text, int(label)))
elif (self.dataset_name == "Subj"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
text = l[2:]
text = text.lstrip('"').rstrip('"')
label = l[0]
D.append((text, int(label)))
elif (self.dataset_name == "TREC"):
with open(filename, encoding='utf-8') as f:
for i, l in enumerate(f.readlines()):
text = l[2:]
text = text.lstrip('"').rstrip('"')
label = l[0]
D.append((text, int(label)))
# Shuffle the dataset.
if (is_shuffle):
random.seed(1)
random.shuffle(D)
# Set the number of samples.
if (sample_num == -1):
# -1 for all the samples
return D
else:
return D[:sample_num + 1]
# Load the Knowledge Base for DuEL2.0.
def load_kb(self, filename):
kb_list = []
mention2id = {}
id2data = {}
id2type = {}
with open(filename, "r", encoding='utf-8') as kb_file:
for line in kb_file.readlines():
k = json.loads(line)
kb_list.append(k)
subject_id = k["subject_id"]
alias = k["alias"]
data = k["data"]
type = k["type"]
id2data[subject_id] = data
id2type[subject_id] = type
subject = k["subject"]
if (subject not in alias):
alias.append(subject)
for alia in alias:
if (alia not in mention2id):
mention2id[alia] = set()
mention2id[alia].add(subject_id)
else:
mention2id[alia].add(subject_id)
return kb_list, mention2id, id2data, id2type
class Model():
def __init__(self, model_name=""):
self.model_name = model_name
self.config_path, self.checkpoint_path, self.dict_path = "", "", ""
if (model_name == 'google-bert-uncased'):
self.config_path = './models/uncased_L-12_H-768_A-12/bert_config.json'
self.checkpoint_path = './models/uncased_L-12_H-768_A-12/bert_model.ckpt'
self.dict_path = './models/uncased_L-12_H-768_A-12/vocab.txt'
elif (model_name == 'google-bert-cased'):
self.config_path = './models/cased_L-12_H-768_A-12/bert_config.json'
self.checkpoint_path = './models/cased_L-12_H-768_A-12/bert_model.ckpt'
self.dict_path = './models/cased_L-12_H-768_A-12/vocab.txt'
elif (model_name == 'google-bert-cased-large'):
self.config_path = './models/cased_L-24_H-1024_A-16/bert_config.json'
self.checkpoint_path = './models/cased_L-24_H-1024_A-16/bert_model.ckpt'
self.dict_path = './models/cased_L-24_H-1024_A-16/vocab.txt'
elif (model_name == 'google-bert-small'):
self.config_path = './models/uncased_L-8_H-512_A-8/bert_config.json'
self.checkpoint_path = './models/uncased_L-8_H-512_A-8/bert_model.ckpt'
self.dict_path = './models/uncased_L-8_H-512_A-8/vocab.txt'
elif (model_name == 'google-bert-wwm-large'):
self.config_path = './models/wwm_uncased_L-24_H-1024_A-16/bert_config.json'
self.checkpoint_path = './models/wwm_uncased_L-24_H-1024_A-16/bert_model.ckpt'
self.dict_path = './models/wwm_uncased_L-24_H-1024_A-16/vocab.txt'
elif (model_name == 'google-bert-cased-wwm-large'):
self.config_path = './models/wwm_cased_L-24_H-1024_A-16/bert_config.json'
self.checkpoint_path = './models/wwm_cased_L-24_H-1024_A-16/bert_model.ckpt'
self.dict_path = './models/wwm_cased_L-24_H-1024_A-16/vocab.txt'
elif (model_name == 'google-bert-zh'):
self.config_path = './models/chinese_L-12_H-768_A-12/bert_config.json'
self.checkpoint_path = './models/chinese_L-12_H-768_A-12/bert_model.ckpt'
self.dict_path = './models/chinese_L-12_H-768_A-12/vocab.txt'
elif (model_name == 'hfl-bert-wwm'):
self.config_path = './models/chinese_wwm_L-12_H-768_A-12/bert_config.json'
self.checkpoint_path = './models/chinese_wwm_L-12_H-768_A-12/bert_model.ckpt'
self.dict_path = './models/chinese_wwm_L-12_H-768_A-12/vocab.txt'
elif (model_name == 'hfl-bert-wwm-ext'):
self.config_path = './models/chinese_wwm_ext_L-12_H-768_A-12/bert_config.json'
self.checkpoint_path = './models/chinese_wwm_ext_L-12_H-768_A-12/bert_model.ckpt'
self.dict_path = './models/chinese_wwm_ext_L-12_H-768_A-12/vocab.txt'
elif (model_name == "uer-mixed-bert-tiny"):
self.config_path = './models/uer_mixed_corpus_bert_tiny/bert_config.json'
self.checkpoint_path = './models/uer_mixed_corpus_bert_tiny/bert_model.ckpt'
self.dict_path = './models/uer_mixed_corpus_bert_tiny/vocab.txt'
elif (model_name == "uer-mixed-bert-small"):
self.config_path = './models/uer_mixed_corpus_bert_small/bert_config.json'
self.checkpoint_path = './models/uer_mixed_corpus_bert_small/bert_model.ckpt'
self.dict_path = './models/uer_mixed_corpus_bert_small/vocab.txt'
elif (model_name == "uer-mixed-bert-base"):
self.config_path = './models/uer_mixed_corpus_bert_base/bert_config.json'
self.checkpoint_path = './models/uer_mixed_corpus_bert_base/bert_model.ckpt'
self.dict_path = './models/uer_mixed_corpus_bert_base/vocab.txt'
elif (model_name == "uer-mixed-bert-large"):
self.config_path = './models/uer_mixed_corpus_bert_large/bert_config.json'
self.checkpoint_path = './models/uer_mixed_corpus_bert_large/bert_model.ckpt'
self.dict_path = './models/uer_mixed_corpus_bert_large/vocab.txt'
elif (model_name == "albert-base-zh"):
self.config_path = './models/albert_base_zh/albert_config.json'
self.checkpoint_path = './models/albert_base_zh/model.ckpt-best'
self.dict_path = './models/albert_base_zh/vocab_chinese.txt'
elif (model_name == "albert-xlarge-zh"):
self.config_path = './models/albert_xlarge_zh/albert_config.json'
self.checkpoint_path = './models/albert_xlarge_zh/model.ckpt-best'
self.dict_path = './models/albert_xlarge_zh/vocab_chinese.txt'
elif (model_name == "albert-base-en"):
self.config_path = './models/albert_base_v2/albert_config.json'
self.checkpoint_path = './models/albert_base_v2/model.ckpt-best'
self.dict_path = './models/albert_base_v2/30k-clean.vocab'
self.spm_path = './models/albert_base_v2/30k-clean.model'
def read_labels(label_file_path):
labels_text = []
text2id = {}
with open(label_file_path, 'r', encoding='utf-8') as f:
for index, line in enumerate(f.readlines()):
label = line.strip('\n')
labels_text.append(label)
text2id[label] = index
return labels_text, text2id
def sample_dataset(data: list, k_shot: int, label_num=-1):
if(k_shot==-1):
return data
label_set = set()
label2samples = {}
for d in data:
(text, label) = d
label_set.add(label)
if (label in label2samples):
label2samples[label].append(d)
else:
label2samples[label] = [d]
if (label_num != -1):
assert len(label_set) == label_num
new_data = []
for label in label_set:
if (isinstance(label, float)):
random.seed(0)
new_data = random.sample(data, k_shot)
random.shuffle(new_data)
return new_data
random.seed(0)
new_data += random.sample(label2samples[label], k_shot)
random.seed(0)
random.shuffle(new_data)
return new_data
# if __name__ == "__main__":
# print()