-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
57 lines (46 loc) · 1.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import cv2
import json
from Prototype import *
import cv2
def load_pfm(fn):
if fn.endswith(".pfm"):
fid = open(fn, "rb")
else:
print("No pfm file! \n")
return
raw_data = fid.readlines()
fid.close()
cols = int(raw_data[1].strip().split(" ")[0])
rows = int(raw_data[1].strip().split(" ")[1])
del raw_data[2] #data like size and type are removed before constructing the image
del raw_data[1]
del raw_data[0]
image = np.fromstring("".join(raw_data), dtype=np.float32) #Image will be a 1D long array
del raw_data
image = image.reshape(rows, cols)
return image
with open('ImageAndDepthFile.json') as f:
data = json.load(f)
keys=data.keys()
InputPlaceholder=tf.placeholder(tf.float32,shape=(None,None,None,3))
DP4=tf.placeholder(tf.float32,shape=(None,None,None,1))
DP3=tf.placeholder(tf.float32,shape=(None,None,None,1))
DP2=tf.placeholder(tf.float32,shape=(None,None,None,1))
DP1=tf.placeholder(tf.float32,shape=(None,None,None,1))
O4,O3,O2,O1=Build(ph)
LossTensor=tf.losses.mean_squared_error(O4,DP4)+
tf.losses.mean_squared_error(O3,DP3)+
tf.losses.mean_squared_error(O2,DP2)+
tf.losses.mean_squared_error(O1,DP1)
optimizer=tf.train.AdamOptimizer().minimize(LossTensor)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for key in keys:
image=cv2.imread(key)
GT4=load_pfm(data[key])
GT3=GT4[::2,::2]
GT2=GT2[::4,::2]
GT1=GT1[::8,::8]
Loss,_=sess.run([LossTensor,optimizer],feed_dict={DP1:GT1,DP2:GT2,DP3:GT3,DP4:GT4,InputPlaceholder:image})
print(Loss)